Synthèses de formules Par Dimitri PIANETA

Version 1 (2013)
Version 2 (février 2014)
Version 3 (novembre 2014)
Version 4 (avril 2015)
Version 5(septembre 2015)

Sommaire

I) Logique mathématique :	3
II) Symboles divers :	3
III) Quelques opérations:	4
IV) Fonctions:	5
V) Quelques formules :	5
VI) Ensemble de nombre :	6
VII) Fonctions exponentielles et logarithmiques:	7
VII) Formule trigonométriques:	8
VIII) Formule inverse trigonométriques:	16
IX) Fonction hyperbolique:	19
X) Fonction arc trigonométrique:	23
XI) Dérivées:	25
XII) Intégrale	28
XIII) Alphabet Grecs et constantes:	29
XIV) Produits et facteurs:	30
XV) Les opérateurs :	31
XVI) Géométrie :	35
XVII) Algèbre :	41
XVIII) Théorèmes et définitions :	44
XIX) Les nombres complexes :	48
XX) Les séries :	48
XXI) Les transformées de LAPLACE :	50
XXII) Les transformées Z :	51
XXIII) Séries de Fourier et transformées de Fourier :	52
XXIV) Formules numérique :	53
XXIV) Formule vectorielle :	55
XXV) Mécaniques :	56

I) Logique mathématique :

Symbole	Utilisation	Nom du symbole	Remarques et exemples
\Rightarrow	$p \Rightarrow q$	Signe d'implication	On peut aussi écrire $q \leftarrow p$
			Si p est vrai, alors q est aussi vrai.
←	$p \rightleftharpoons q$	Signe d'implication	Si q est vrai, alors p est aussi vrai.
\Leftrightarrow	$p \Leftrightarrow q$	Signe d'équivalence	
A	$\forall x \in A$	Quantificateur universel	"Pour tous"
3	$\exists x \in A$	Quantificateur	"Il existe"
		existentiel	
3!	$\exists ! x \in A$		Est utilisé pour indiquer l'existence
			d'un élément unique.
0	$f \circ g$	Fonction composée	On peut la notée aussi f(g(.))
€	$x \in A$		"appartient à "
€		Contient comme	
		élément	
Λ	$[0,1] \cap [1,2]$	Interception	
	= {1}		
U	$[0,1] \cup [1,2]$	Union	
	$= \{0,2\}$		
_	A⊂B		A est contenu dans B.

II) Symboles divers :

Symbole	Utilisation	Sens, énoncé	
=	a = b	a est égale à b	
≠	$a \neq b$	a est différent de b	
def	$a \stackrel{\text{def}}{=} b$	a est égal par définition à b	
≡	$2x + x \equiv 3x$	Équivalent à	
	$a \triangleq b$	a correspond à b	
≅	$a \cong b$	a approximativement égal à b	
≈	$a \approx b$	a presque égale à b	
∝ ou ~	$a \propto b$ ou $a \sim b$	a est proportionnel à b	
<	a < b	a est strictement inférieur à b	
>	a > b	a est strictement supérieur à b	
≥	$a \ge b$	a est supérieur ou égal à b	
≤	$a \leq b$	a est inférieur ou égal à b	
>>	$a \gg b$	a beaucoup plus grand que b	
«	$a \ll b$	a beaucoup plus petit que b	
// ou	AB // CD	La droite AB est parallèle à la droite CD	
<u>T</u>	AB ⊥ CD	La droite AB est perpendiculaire à la droite CD	
∞		infini	
()	Le point a, b (a,b)	A coordonnée en \mathbb{R}^2	
[,]	[a,b]	La valeur entre a et b inclus dans l'intervalle	

(,]	(a,b]	La valeur entre a et b est exclus en a et inclus en b. Similaire pour [a,n).
	$\lfloor x \rfloor$	Minimum de x. Proche de l'entier $\leq x$.
[]	[x]	Maximum de x. Proche de l'entier $\geq x$.

III) Quelques opérations:

Symbole, utilisation	Sens, énoncé	
a+b a-b	Addiction, soustraction	
$a \pm b$ $a \mp b$	Plus ou moins, moins ou plus	
a.b $a \times b$ ab	a multiplié par b	
$\frac{a}{b}$ a/b ab ⁻¹		
$\sum_{i=0}^{n} a_i$	La somme	
$\prod_{k=1}^{n} a_k$	Le produit	
a ^p	a exposant p	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Racine carrée de a	
$a^{1/n} a^{\frac{1}{n}} \sqrt[n]{a}$	Racine nième	
a	Valeur absolue de a; module de a	Pour a réel : $sgn \ a = \begin{cases} 1 \ pour \ a > 0 \\ 0 \ pour \ a = 0 \\ -1 \ pour \ a < 0 \end{cases}$ Pour a complexe: $sgn \ a$ $= \begin{cases} \frac{a}{ a } = e^{i \ arg \ a} \ pour \ a \neq 0 \\ 0 \ pour \ a = 0 \end{cases}$
Sgn a	Signum de a	
$< a, a > ou < a > ou \bar{a}$	Valeur moyenne de a	
n!	n factorielle	
$\binom{n}{p}$ ou C_n^p	Coefficient binomial n, p	
ent a ou E(a)	Caractère de a : le plus grand nombre entier inférieur ou égal à 0	
det(A)	Déterminant de la matrice A	

IV) Fonctions:

Symbole, utilisation	Sens énoncé	Remarques et exemples
f	Fonction f	
f(x) $f(x,y,)$	Valeur de la fonction f	
$[f(x)]_a^b$	f(b)-f(a)	
$f^{-1}(x)$	La fonction inverse de f(x)	
$g \circ f$	g rond f	
$x \to a$	x tend vers a	
~	est asymptotiquement égale à	$\sin x \simeq x \ quand \ x \to a$
f(x)=O(g(x))	f est d'ordre comparable ou inférieur à g	$\lim_{x \to \infty} \sup_{y > x} f(y)/g(x) < \infty$
f(x)=o(g(x))	f est d'ordre inférieur à g	$\lim_{x \to \infty} \sup_{y > x} f(y)/g(x) = 0$
Δx	Accroissement de x	
df(x)/dx	Dérivée de la fonction f d'une variable	

V) Quelques formules:

O **Un polynôme**: est une fonction de x de la forme de $P(x) = a_0 x^0 + a_1 x^1 + a_2 x^2 + \cdots + a_n x^n$.

On note P(x) de la forme générale comme $P(x) = \sum_{i=0}^{n} a_i x^i$ avec a_i appartenant au domaine des Réels et imaginaires, décimales.

 La Transformée de Fourier : est de la forme de H(u) (traitement des signaux analogiques) suivant:

$$H(u) = \int_{-\infty}^{+\infty} h(x)e^{-2iu\pi x} dx$$

o Intégration par partie: On la note IPP.

Cette intégrale est la forme suivante:

$$V(x) = \int_a^{\overline{b}} P(x)Q(x)dx$$
 avec P(x) et Q(x) sont deux fonctions de x.

La méthode est la suivant que je vais employer par la suite:

$$P(x) = P'(x) = Q(x) = Q(x) = Q(x)$$

Donc la méthode IPP, nous donnes le calcul suivant:

$$V(x) = [P(x)Q(x)]_a^b - \int_a^b P'(x)Q(x)dx$$

Ce qui nous donne maintenant :

$$V(x) = P(x)_b Q(x)_b - P(x)_a Q(x)_a - \int_a^b P'(x) Q(x) dx$$

o Formule d'Euler:

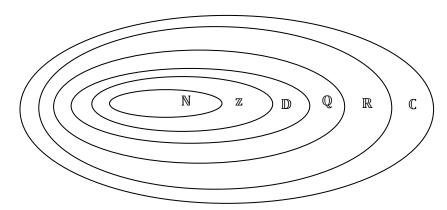
$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2} \qquad \text{et } \sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

Sinus cardinale:

$$sinc(\pi u) = \frac{\sin(\pi u)}{\pi u}$$

VI) Ensemble de nombre :

On définit un ensemble s de nombre par le symbole Ω : Voici l'ordre de rangement de l'ensemble de nombre:



Symbole	Appellation
N	Ensemble des entiers
	naturels
${\mathbb Z}$	Ensemble des entier
	relatifs
\mathbb{D}	Ensemble des décimaux
Q	Ensemble des rationnels
\mathbb{R}	Ensemble des réels
\mathbb{C}	Ensemble des
	complexes

Soit $\Omega \in \mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

Définitions:

1. Un entier naturel est un nombre entier et positif. Tous les entiers naturels forment un ensemble noté $\mathbb{N} = \{0; 1; 2; ... \}$.

Ex: $26 \in \mathbb{N}$ se lit appartient à N.

- 2. Un entier relatif est un nombre pouvant être positif ou négatif. Tous les entiers relatifs forment l'ensemble noté $\mathbb{Z}=\{...;-2;-1;0;1;2;...\}$
- 3. Un nombre décimal est un quotient d'un nombre entier par un puissance de 10. Ex: $3.2 = \frac{32}{10^1}$ est un nombre décimal.

Remarque: Un nombre décimale est un nombre dont la partie décimale est finie, c'est-à-dire qui n'a qu'un nombre fini de chiffres après la virgule.

- 4. Un nombre rationnel est un quotient de deux nombres: $\frac{p}{q}$ tel que $p \in \mathbb{Z}$ et $q \in \mathbb{N}$ Exemple 2/3 est un nombre rationnel.
- 5. Un nombre réel est tout les nombres qui appartiennent à l'ensemble des points précédents définis.

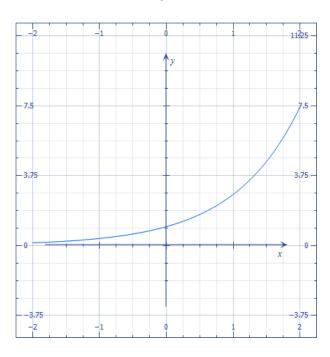
6. Un nombre imaginaire est un nombre réel de la racine $i^2 = -1$, donc de l'écriture $a+i^2b$.

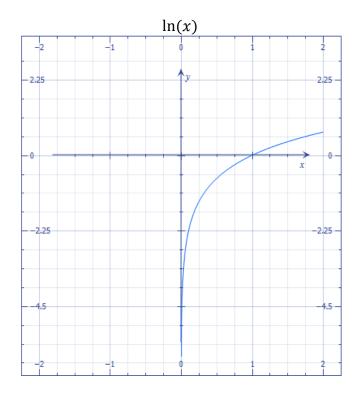
VII) Fonctions exponentielles et logarithmiques:

Symbole, utilisation	Sens, énoncé
$e^{x} \exp(x)$	Exponentielle de base de x
$log_a x$	Logarithme de base de a
ln (x)	Logarithme népérien
lg(x)	Logarithme décimal de x : $\lg x = \log_{10} x$
lb(x)	Logarithme binaire de x : lb $x = log_2 x$

Les courbes:

 e^{x}





Quelques propriétés:

$$e^{ax} \cdot e^{bx} = e^{(a+b)x}$$

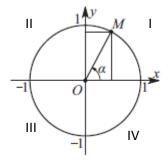
$$\ln(ax) \cdot \ln(bx) = \ln[a+b] x$$

$$\ln(ax) / \ln(bx) = \ln ax - \ln bx$$

VII) Formule trigonométriques:

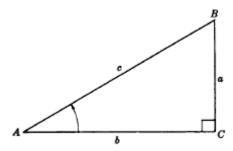
Le cercle trigonométrique:

Le cercle trigonométrique est un cercle d'unité rayon avec le centre à l'origine d'un système coordonné orthogonale Oxy. Les axes de coordonnées sont divisées en quatre quartier du cercle (quadrants). On considère la rotation de rayon polaire issu de l'origine O et d'un point M du cercle trigonométrique. Soit α l'angle entre l'axe x et le rayon polaire OM mesuré de direction positive d'axe x. Cet angle est assimilé positive dans le cas du sens de rotation contraire à l'aiguille d'une montre (appelé sens trigonométrique) et négative dans le cas du sens de rotation d'une aiguille d'une montre.



Définition d'une fonction trigonométrique:

Soit un triangle ABC avec un angle droit de 90° en C.



- sinus de A: $\sin(A) = \frac{a}{c} = \frac{côté opposé}{côté hypothénuse}$ cosinus de A: $\cos(A) = \frac{b}{c} = \frac{côté adjacent}{côté hypothénuse}$ tangente de A: $\tan(A) = \frac{a}{b} = \frac{côté opposé}{côté adjacent}$ cotangente de A: $\cot A = \frac{b}{c} = \frac{côté adjacent}{côté adjacent}$ secant de A: $\sec A = \frac{c}{b} = \frac{côté hypothénuse}{côté adjacent}$ cosecant de A: $\csc A = \frac{c}{a} = \frac{côté hypothénuse}{côté adjacent}$

Relations degrés, radians et grades:

- 1 radian = $\frac{180^{\circ}}{\pi}$ = 57,29577 95130 8232 ... °
- $1^{\circ} = \frac{\pi}{180} radians = 0.01745 32925 19943 29576 92..radians$
- 1 grad = $\frac{9}{10}n$ (avec n en grade) pour donner des dégrés
- Soit 90° est égale à 100 grades.
 1 grad = π/200 n radians (avec n en grade)

Formules de trigonométrie circulaire:

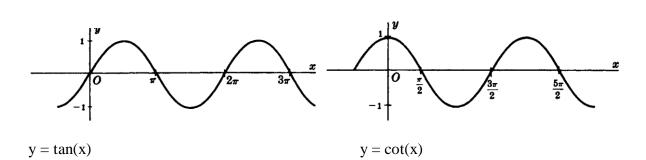
Soit a, b, p, q, x, y $\in \mathbb{R}$ (tels que les fonctions soient bien définies) et $n \in \mathbb{R}$.

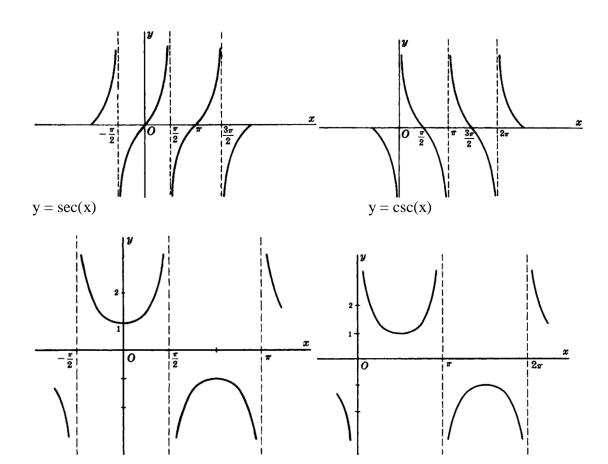
Valeurs remarquables:

x(rad)	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
sin(x)	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
cos(x)	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1
tan(x)	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	+8	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0
cot(x)	∞	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	$-\frac{\sqrt{3}}{3}$	-1	$-\sqrt{3}$	8

Angle en degré (x)	Angle en radian (x)	sin(x)	cos(x)	tan(x)	cot(x)	sec(x)	csc(x)
0°	0	0	1	0	∞	1	∞
15°	$\frac{\pi}{12}$	$\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$2-\sqrt{3}$	$2 + \sqrt{3}$	$\sqrt{6}-\sqrt{2}$	$\sqrt{6} + \sqrt{2}$
30°	π	$\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	$\sqrt{3}$	$\frac{2}{3}\sqrt{3}$	2
45°	$ \begin{array}{c} \overline{6} \\ \overline{\pi} \\ \overline{4} \\ \overline{\pi} \\ \overline{3} \\ \overline{5}\pi \end{array} $	$\frac{\frac{1}{2}\sqrt{2}}{\frac{1}{2}\sqrt{3}}$	$\frac{1}{2}\sqrt{2}$	1	1	$\sqrt{2}$	$\sqrt{2}$
60°	$\frac{\pi}{3}$	$\frac{1}{2}\sqrt{3}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	2	$\frac{\frac{2}{3}\sqrt{3}}{\sqrt{6}-\sqrt{2}}$
75°		$\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$2 + \sqrt{3}$	$2-\sqrt{3}$	$\sqrt{6} + \sqrt{2}$	$\sqrt{6}-\sqrt{2}$
90°	$\frac{\pi}{2}$	1	0	±∞	0	±∞	1
105°	$ \begin{array}{c} \hline $	$\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$-\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$-(2+\sqrt{3})$	$-(2-\sqrt{3})$	$-(\sqrt{6}+\sqrt{2})$	$\sqrt{6}-\sqrt{2}$
120°	$\frac{2\pi}{3}$	$\frac{1}{2}\sqrt{3}$ $\frac{1}{2}\sqrt{2}$	$ \begin{array}{r} -\frac{1}{2} \\ -\frac{1}{2}\sqrt{2} \\ -\frac{1}{2}\sqrt{3} \end{array} $	$-\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	-2	$\begin{array}{c} \frac{2}{3}\sqrt{3} \\ \sqrt{2} \end{array}$
135°	$ \begin{array}{r} \overline{3} \\ \overline{3\pi} \\ \overline{4} \\ \overline{5\pi} \end{array} $	$\frac{1}{2}\sqrt{2}$	$-\frac{1}{2}\sqrt{2}$	-1	-1	$-\sqrt{2}$	
150°	$\frac{5\pi}{6}$	$\frac{1}{2}$	$-\frac{1}{2}\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$ $-(2-\sqrt{3})$	$-\sqrt{3}$	$-\frac{2}{3}\sqrt{3}$ $-(\sqrt{6}-\sqrt{2})$	-2
165°	$\frac{11\pi}{12}$	$\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$-\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$-(2-\sqrt{3})$	$-(2+\sqrt{3})$	$-(\sqrt{6}-\sqrt{2})$	$\sqrt{6} + \sqrt{2}$
180°		0	-1	0	±∞	-1	±∞
195°	$\frac{\pi}{13\pi}$	$-\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$-\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$0 \\ 2 - \sqrt{3}$	$\frac{\pm \infty}{2 + \sqrt{3}}$	$-(\sqrt{6}-\sqrt{2})$	$-(\sqrt{6}+\sqrt{2})$
210°	$\frac{12}{7\pi}$	$-\frac{1}{2}$	$-\frac{1}{2}\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	$\sqrt{3}$	$-\frac{2}{3}\sqrt{3}$ $\sqrt{2}$	-2
225°	$ \begin{array}{r} \hline 6 \\ \hline 5\pi \\ \hline 4 \\ \hline 4\pi \end{array} $	$-\frac{1}{2}\sqrt{2}$	$-\frac{\overline{1}}{2}\sqrt{2}$		1		$\sqrt{2}$;
240°	$\frac{4\pi}{3}$ 17π	$-\frac{1}{2}\sqrt{2}$ $-\frac{1}{2}\sqrt{3}$	$-\frac{1}{2}\sqrt{3}$ $-\frac{1}{2}\sqrt{2}$ $-\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{3}\sqrt{3}$	-2	$-\frac{2}{3}\sqrt{3}$
255°	$\frac{17\pi}{12}$ 3π	$-\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$-\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$2 + \sqrt{3}$	$-(2-\sqrt{3})$	$-(\sqrt{6}+\sqrt{2})$	$-(\sqrt{6}-\sqrt{2})$
270°	$\frac{3\pi}{2}$ 19π	-1	0	±∞	0	∓∞	-1
285°	$ \begin{array}{r} 1\overline{9}\pi \\ 12 \\ 5\pi \end{array} $	$-\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$\frac{1}{4}(\sqrt{6}-\sqrt{2})$	$-(2+\sqrt{3})$	$-(2-\sqrt{3})$	$\sqrt{6} + \sqrt{2}$	$-(\sqrt{6}-\sqrt{2})$
300°	$\frac{5\pi}{3}$	$ \begin{array}{r} -\frac{1}{2}\sqrt{3} \\ -\frac{1}{2}\sqrt{2} \\ -\frac{1}{2} \end{array} $	$\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	2	$-\frac{2}{3}\sqrt{3}$ $-\sqrt{2}$
315°	$ \frac{\frac{3}{3}}{\frac{7\pi}{4}} $ $ \frac{11\pi}{}$	$-\frac{1}{2}\sqrt{2}$	$\frac{1}{2}\sqrt{2}$	-1		$\sqrt{2}$	
330°	$\frac{11\pi}{6}$ 23π	$-\frac{1}{2}$	$\frac{1}{2}\sqrt{3}$	$-\frac{1}{3}\sqrt{3}$	$-\sqrt{3}$	$\frac{2}{3}\sqrt{3}$	-2
345°	$\frac{23\pi}{12}$	$-\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$\frac{1}{4}(\sqrt{6}+\sqrt{2})$	$-(2-\sqrt{3})$	$-(2+\sqrt{3})$	$\sqrt{6}-\sqrt{2}$	$-(\sqrt{6}+\sqrt{2})$
360°	2π	0	1	0	∓∞	1	∓∞

Graphe des fonctions trigonométrique :





Signes des fonctions trigonométriques :

Quartier	Angle en radians	sin x	cos x	tan x	cot x	sec x	cossec x
I	$0 < x < \frac{\pi}{2}$	+	+	+	+	+	+
II	$\frac{\pi}{2} < x < \pi$	+	-	-	-	-	+
III	$\pi < x < \frac{3\pi}{2}$	-	-	+	+	-	-
IV	$\frac{3\pi}{2} < x < 2\pi$	-	+	-	-	+	-

Relations fondamentales:

$$\tan(x) = \frac{\sin(x)}{\cos(x)} \qquad \cot(x) = \frac{1}{\tan(x)} = \frac{\cos(x)}{\sin(x)} \qquad \sec(x) = \frac{1}{\cos(x)} \qquad \csc(x) = \frac{1}{\sin(x)}$$

$$cos^{2}(x) + sin^{2}(x) = 1$$
 $-\frac{d}{dx}cotan(x) = 1 + cotan^{2}(x) = \frac{1}{sin^{2}(x)}$

$$sec^{2}(x) - tan^{2}(x) = 1$$
 $csc^{2}(x) - cot^{2}(x) = 1$

$$\frac{d}{dx}tan(x) = 1 + tan^2(x) = \frac{1}{cos^2(x)}$$

$$Arccos(x) + Arcsin(x) = \frac{\pi}{2}$$
 $Arctan(x) + Arctan(\frac{1}{x}) = \sin(x) * \frac{\pi}{2} (\sin x < 0) - \frac{\pi}{2} \sin(x) = \frac{\pi}{2}$

Arctan(x)+Arccotan(x)= $\frac{\pi}{2}$

Relations d'Euler:

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2} \operatorname{et} \sin(x) = \frac{e^{ix} - e^{-ix}}{2i}.$$

Relations de Moivre:

$$e^{inx} = (\cos(x) + i\sin(x))^{n} = \cos(nx) + i\sin(nx), i^{2}=1$$

$$\sin(ix) = i\sinh(x), \quad \cos(ix) = \cosh(x),$$

$$\tan(ix) = i\tanh(x), \quad \cot(ix) = -i\coth(x)$$

Formules d'addition:

$$\sin(x+y) = \sin(x).\cos(y) + \sin(x).\sin(y)$$

$$\sin(x-y) = \sin(x).\cos(x) - \sin(y).\cos(x)$$

$$\cos(x+y) = \cos(x).\cos(y) - \sin(x).\sin(y)$$

$$\cos(x-y) = \cos(x).\cos(y) + \sin(x).\sin(y)$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \cdot \tan y}$$

$$\tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \cdot \tan y}$$

$$\cot(x-y) = \frac{\cot x \cot y - 1}{\cot y + \cot x}$$

$$\cot(x+y) = \frac{\cot x \cot y + 1}{\cot y - \cot x}$$

Formules d'angle double:

$$\cos(2x) = \cos^2(x) - \sin^2(x) = 2\cos^2(x) - 1 = 1 - 2\sin^2(x)$$

$$\sin(2x) = 2\sin(x) \cdot \cos(x)$$

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

Formules du demi-angle

$$\frac{\sin^2 x}{\cos^2(x)} = \frac{1 + \cos(2x)}{2} \quad \sin^2(x) = \frac{1 - \cos(2x)}{2} \quad \tan(x) = \frac{\sin(2x)}{1 + \cos(2x)} = \frac{1 - \cos(2x)}{\sin(2x)}$$

$$\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2} \quad \cos^2 \frac{x}{2} = \frac{1 + \cos x}{2} \quad \tan \frac{x}{2} = \frac{\sin x}{1 + \cos x} = \frac{1 - \cos x}{\sin x} \quad \cot \frac{x}{2} = \frac{\sin x}{1 - \cos x} = \frac{1 + \cos x}{\sin x}$$
En posant t= tan(x/2) pour $x \neq \pi$ (à 2π près), on a : $\cos(x) = \frac{1 - t^2}{1 + t^2}$, $\sin(x) = \frac{2t^2}{1 + t^2}$, $\tan(x) = \frac{2t^2}{1 - t^2}$

Somme, différence et produit :

$$\cos(p) + \cos(q) = 2\cos\left(\frac{p+q}{2}\right).\cos\left(\frac{p-q}{2}\right)$$
$$\cos(p) - \cos(q) = -2\sin\left(\frac{p+q}{2}\right).\sin\left(\frac{p-q}{2}\right)$$

$$\sin(p) + \sin(q) = 2\sin\left(\frac{p+q}{2}\right) \cdot \cos\left(\frac{p-q}{2}\right)$$
$$\sin(p) - \sin(q) = 2\cos\left(\frac{p+q}{2}\right) \cdot \sin\left(\frac{p-q}{2}\right)$$

$$\sin(p)\sin(q) = \frac{1}{2}\{\cos(p-q) - \cos(p-q)\}\$$

$$\cos(p)\cos(q) = \frac{1}{2}\{\cos(p-q) + \cos(p-q)\}\$$

$$\sin(p)\cos(q) = \frac{1}{2}\{\sin(p-q) + \sin(p-q)\}\$$

$$sin^{2}(p) - sin^{2}(q) = cos^{2}(q) - cos^{2}(p) = sin(p+q)sin(p-q)$$

$$sin^{2}(p) - cos^{2}(q) = -cos(p+q)cos(p-q)$$

$$\tan(p) + \tan(q) = \frac{\sin(p+q)}{\cos(p).\cos(q)} \quad \tan(p) - \tan(q) = \frac{\sin(p-q)}{\cos(p).\cos(q)}$$
$$\cot(p) + \cot(y) = \frac{\sin(q+p)}{\sin(p)\sin(q)} \quad \cot(p) - \cot(y) = \frac{\sin(q-p)}{\sin(p)\sin(q)}$$

Multiple angle:

$$\sin nx = \sin x \{ (2\cos x)^{n-1} - {n-2 \choose 1} (2\cos x)^{n-3} + {n-3 \choose 1} (2\cos x)^{n-5} - \cdots \}$$

$$\cos nx = \frac{1}{2} \Big\{ (2\cos x)^n - \frac{n}{1} (2\cos x)^{n-2} + \frac{n}{2} {n-3 \choose 1} (2\cos x)^{n-4} - \frac{n}{3} {n-4 \choose 1} (2\cos x)^{n-6} + \cdots \Big\}$$

$$\cos(2nx) = 1 + \sum_{k=1}^{n} (-1)^k \frac{n^2(n^2 - 1) \dots [n^2 - (k-1)^2]}{(2k)!} 4^k \sin^{2k} x$$

$$\cos[(2n+1)x] = \cos(x) \Big\{ 1 + \sum_{k=1}^{n} (-1)^k \frac{[(2n+1)^2 - 1][(2n+1)^2 - 3^2] \dots [(2n+1)^2 - (2k-1)^2]}{(2k)!} \sin^{2k} x \Big\}$$

$$\sin(2nx) = 2n\cos(x)\left[\sin(x) + \sum_{k=1}^{n}(-4)^{k}\frac{(n^{2}-1)(n^{2}-2^{2})...(n^{2}-k^{2})}{(2k-1)!}sin^{2k-1}x\right]$$

$$\sin[(2n+1)x] = (2n+1)\{\sin(x)$$

$$+ \sum_{k=1}^{n}(-1)^{k}\frac{[(2n+1)^{2}-1][(2n+1)^{2}-3^{2}]...[(2n+1)^{2}-(2k-1)^{2}]}{(2k+1)!}sin^{2k+1}x\}$$

Où n = 1, 2, ...

$$\cos 2x = 2\cos^2 x - 1 = 1 - 2\sin^2 x$$
 $\sin 2x = 2\sin x \cos x$
 $\cos 3x = 4\cos^3 x - 3\cos x$ $\sin 3x = 3\sin x - 4\sin^3 x$
 $\cos 4x = 8\cos^4 x - 8\cos^2 x + 1$ $\sin 4x = 4\sin x \cos x - 8\sin^3 x \cos x$
 $\cos 5x = 16\cos^5 x - 20\cos^3 x + 5\cos x$ $\sin 5x = 5\sin x - 20\sin^3 x + 16\sin^5 x$

$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

$$\tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x}$$

$$\tan 4x = \frac{4 \tan x - 4 \tan^3 x}{1 - 6 \tan^2 x + \tan^4 x}$$

$$\tan 4x = \frac{\tan^5 x - 10 \tan^3 x + 5 \tan x}{1 - 10 \tan^2 x + 5 \tan^4 x}$$

Puissance des fonctions trigonométriques :

$$\cos^{2n} x = \frac{1}{2^{2n-1}} \sum_{k=0}^{n-1} C_{2n}^k \cos(2(n-k)x) + \frac{1}{2^{2n}} C_{2n}^m$$

$$\cos^{2n+1} x = \frac{1}{2^{2n}} \sum_{k=0}^{n} C_{2n+1}^k \cos[(2n-2k+1)x]$$

$$\sin^{2n} x = \frac{1}{2^{2n-1}} \sum_{k=0}^{n-1} (-1)^{n-k} C_{2n}^k \cos(2(n-k)x) + \frac{1}{2^{2n}} C_{2n}^m$$

$$\sin^{2n+1} x = \frac{1}{2^{2n}} \sum_{k=0}^{n} (-1)^{n-k} C_{2n+1}^k \sin[(2n-2k+1)x]$$

Avec n = 1, 2, ... et le coefficient binomial
$$(0!=1)$$
 est $C_m^k = \frac{m!}{k!(m-k)!}$ $\sin^{2n-1} x = \frac{(-1)^{n-1}}{2^{2n-2}} \left\{ \sin(2n-1)x - {2n-1 \choose 1} \sin(2n-3)x + \cdots + {2n-1 \choose n-1} \sin x \right\}$ $\cos^{2n-1} x = \frac{1}{2^{2n-2}} \left\{ \cos(2n-1)x + {2n-1 \choose 1} \cos(2n-3)x + \cdots + {2n-1 \choose n-1} \cos x \right\}$ $\sin^{2n} x = \frac{1}{2^{2n}} {2n \choose n} + \frac{(-1)^n}{2^{2n-1}} \left\{ \cos(2n)x - {2n \choose 1} \cos(2n-2)x + \cdots + {2n \choose n-1} \cos 2x \right\}$ $\cos^{2n} x = \frac{1}{2^{2n}} {2n \choose n} + \frac{1}{2^{2n-1}} \left\{ \cos(2n)x + {2n \choose 1} \cos(2n-2)x + \cdots + {2n \choose n-1} \cos 2x \right\}$

$$\sin^{2} x = \frac{1}{2} - \frac{1}{2}\cos 2x$$

$$\cos^{2} x = \frac{1}{2} + \frac{1}{2}\cos 2x$$

$$\sin^{3} x = \frac{3}{4}\sin x - \frac{1}{4}\sin 3x$$

$$\cos^{3} x = \frac{3}{4}\cos x + \frac{1}{4}\cos 3x$$

$$\sin^{4} x = \frac{3}{8} - \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$$

$$\cos^{4} x = \frac{3}{8} + \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$$

$$\sin^{5} x = \frac{5}{8}\sin x - \frac{5}{16}\sin 3x + \frac{1}{16}\sin 5x$$

$$\cos^{5} x = \frac{5}{8}\cos x + \frac{5}{16}\cos 3x + \frac{1}{16}\cos 5x$$

Dérivées:

$$\cos'(x) = \frac{d \cos x}{dx} = -\sin(x)$$

$$\sin'(x) = \frac{d \sin x}{dx} = \cos(x)$$

$$\tan'(x) = \frac{d \tan x}{dx} = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$$

$$\cot'(x) = \frac{d \cot x}{dx} = -\frac{1}{\sin^2(x)}$$

$$arc \sin' x = \frac{1}{\sqrt{1-x^2}} \quad arc \cos'(x) = \frac{-1}{\sqrt{1-x^2}} \quad arc \tan'(x) = \frac{1}{1+x^2}$$

Intégrales:

$$\int \sin x \, dx = -\cos x + C \quad \int \cos x \, dx = \sin x + C \quad \int \tan x \, dx = -\ln|\cos x| + C$$

$$\int \cot x \, dx = \ln|\sin x| + C$$
Avec C qui est une constante

<u>Transformations simples sur x :</u>

$\sin(-x) = -\sin(x)$	$\cos(-x) = \cos(x)$	tan(-x) = -tan(x)
csc(-x) = -csc(x)	sec(-x) = sec(x)	$\cot(-x) = -\cot(x)$

$\sin\left(\frac{\pi}{2} + x\right) = \cos(x)$	$\sin\left(\frac{\pi}{2} - x\right) = \cos(x)$	$\sin(\pi - x) = \sin(x)$	$\sin(-x) = -\sin(x)$
$\cos\left(\frac{\pi}{2} + x\right) = -\sin(x)$	\Z /	$\cos(\pi - x) = -\cos(x)$	
$\tan\left(\frac{\pi}{2} + x\right) = \cot(x)$	$\tan\left(\frac{\pi}{2} - x\right) = \cot(x)$	$\tan(\pi - x) = -\tan(x)$	tan(-x) = -tan(x)

$$\sin(x \pm 2n\pi) = \sin(x)$$

$$\sin(x \pm n\pi) = (-1)^n \sin(x)$$

$$\cos(x \pm 2n\pi) = \cos(x)$$

$$\cos(x \pm n\pi) = (-1)^n \cos(x)$$

$$\sin\left(x \pm \frac{2n+1}{2}\pi\right) = \pm(-1)^n \cos(x)$$

$$\cos\left(x \pm \frac{2n+1}{2}\pi\right) = \pm(-1)^n \sin(x)$$

$$\cos\left(x \pm \frac{2n+1}{2}\pi\right) = \cot(x)$$

$$\cot(x \pm n\pi) = \cot(x)$$

$$\tan\left(x \pm \frac{2n+1}{2}\pi\right) = -\cot(x)$$

$$\cot\left(x \pm \frac{2n+1}{2}\pi\right) = -\tan(x)$$

Où n = 1, 2, ...

Relation entre fonction trigonométrique d'un simple argument :

$$\sin(x) = \pm \sqrt{1 - \cos^{2}(x)} = \pm \frac{\tan(x)}{\sqrt{1 + \tan^{2}(x)}} = \pm \frac{1}{\sqrt{1 + \cot^{2}(x)}} = \frac{\sqrt{\sec^{2}(x) - 1}}{\sec(x)} = \frac{1}{\csc(x)}$$

$$\cos(x) = \pm \sqrt{1 - \sin^{2}(x)} = \pm \frac{\cot(x)}{\sqrt{1 + \cot^{2}(x)}} = \pm \frac{1}{\sqrt{1 + \tan^{2}(x)}} = \frac{\sqrt{\csc^{2}(x) - 1}}{\csc(x)} = \frac{1}{\sec(x)}$$

$$\tan(x) = \pm \sqrt{\sec^{2}(x) - 1} = \pm \frac{\sin(x)}{\sqrt{1 - \sin^{2}(x)}} = \frac{1}{\sqrt{\csc^{2}(x) - 1}} = \pm \frac{\sqrt{1 - \cos^{2}(x)}}{\cos(x)}$$

$$= \frac{1}{\cot(x)}$$

$$\cot(x) = \pm \sqrt{\csc^{2}(x) - 1} = \pm \frac{\cos(x)}{\sqrt{1 - \cos^{2}(x)}} = \frac{1}{\sqrt{\sin(x)}} = \pm \frac{\sqrt{1 - \sin^{2}(x)}}{\sin(x)} = \frac{1}{\tan(x)}$$

$$\sec(x) = \sqrt{1 + \tan^{2}(x)} = \frac{\csc(x)}{\sqrt{\csc^{2}(x) - 1}} = \pm \frac{1}{\sqrt{1 - \sin^{2}(x)}} = \frac{\sqrt{1 + \cot^{2}(x)}}{\cot(x)} = \frac{1}{\cos(x)}$$

$$\sec(x) = \sqrt{1 + \cot^{2}(x)} = \frac{\sec(x)}{\sqrt{\sec^{2}(x) - 1}} = \pm \frac{1}{\sqrt{1 - \cos^{2}(x)}} = \frac{\sqrt{1 + \tan^{2}(x)}}{\tan(x)} = \frac{1}{\sin(x)}$$

Développement limité :

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$$
 (|x| < \infty)

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + \dots$$
 (|x| < \infty)

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots + \frac{2^{2n}(2^{2n} - 1)|B_{2n}|}{(2n)!} x^{2n-1} + \dots$$
 $(|x| < \frac{\pi}{2})$

$$\cot x = \frac{1}{x} - \left(\frac{x}{3} + \frac{x^3}{45} + \frac{2x^5}{945} + \dots + \frac{2^{2n}|B_{2n}|}{(2n)!} x^{2n-1} + \dots\right)$$
 (0 < |x| < \pi)

Où B_n sont les nombres de Bernouilli.

Je rappel ces nombres de Bernouilli qui sont définit par la relation récurrente :

Soit B₀=1, $\sum_{k=0}^{n-1} C_n^k B_k = 0$, n = 2, 3, ...

Les valeurs sont alors,

$$B_0 = 1, B_1 = -\frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30}, B_6 = \frac{1}{42}, B_8 = -\frac{1}{30}, B_{10} = \frac{5}{66}, \dots$$

 $B_{2m+1} = 0 \ pour \ m = 1, 2, \dots$

Représentation dans la forme de produit infini :

$$\sin x = x \left(1 - \frac{x^2}{\pi^2} \right) \left(1 - \frac{x^2}{4\pi^2} \right) \left(1 - \frac{x^2}{9\pi^2} \right) \dots \left(1 - \frac{x^2}{n^2\pi^2} \right) \dots$$

$$\cos x = \left(1 - \frac{4x^2}{\pi^2} \right) \left(1 - \frac{4x^2}{9\pi^2} \right) \left(1 - \frac{4x^2}{25\pi^2} \right) \dots \left(1 - \frac{4x^2}{(2n+1)^2\pi^2} \right) \dots$$

VIII) Formule inverse trigonométriques:

Les notations:

 $\arcsin x \equiv \sin^{-1} x$ (arcsinus est l'inverse de sinus)

 $\arccos x \equiv \cos^{-1} x$ (arccosinus est l'inverse de cosinus)

 $\arctan x \equiv \tan^{-1} x$ (arctangente est l'inverse de tangente)

 $\operatorname{arccot} x \equiv \cot^{-1} x$ (arccotangente est l'inverse de la cotangente)

Les relations de base:

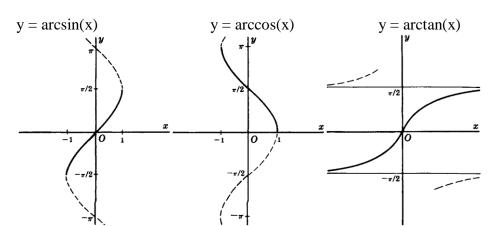
$$\sin(\arcsin x) = x$$
 $\cos(\arccos x) = x$ $\tan(\arctan x) = x$ $\cot(\arctan x) = x$

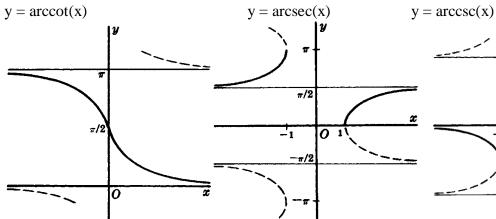
Les inégalités :

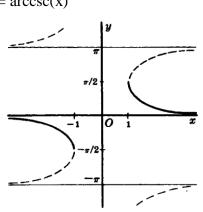
$$-\frac{\pi}{2} \le \arcsin x \le \frac{\pi}{2}, \ 0 \le \arccos x \le \pi \qquad (-1 \le x \le 1)$$
$$-\frac{\pi}{2} \le \arctan x \le \frac{\pi}{2}, \ 0 < \operatorname{arcot} x < \pi \qquad (-\infty < x < +\infty)$$

$$y = \arcsin x$$
, $-1 \le x < 1$ $\iff x = \sin y$, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
 $y = \arccos x$, $-1 \le x < 1$ $\iff x = \cos y$, $0 \le y \le \pi$
 $y = \arctan x$, $-\infty \le x < +\infty$ $\iff x = \tan y$, $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
 $y = \operatorname{arccot} x$, $-\infty \le x < +\infty$ $\iff x = \cot y$, $0 < y < \pi$

Les courbes:







Les relations entre les fonctions trigonométriques:

$$\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$$
$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$

$$\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$$
$$\sec^{-1} x + \csc^{-1} x = \frac{\pi}{2}$$

$$csc^{-1}(x) = sin^{-1}(\frac{1}{x})$$

$$cot^{-1}(x) = tan^{-1}(\frac{1}{x})$$

$$\sec^{-1}(x) = \cos^{-1}(\frac{1}{x})$$

$$\sin^{-1}(-x) = -\sin^{-1}(x)$$

 $\tan^{-1}(-x) = -\tan^{-1}(x)$
 $\sec^{-1}(-x) = \pi - \sec^{-1}(x)$

$$\cos^{-1}(-x) = \pi - \cos^{-1}(x)$$
$$\cot^{-1}(-x) = \pi - \cot^{-1}(x)$$
$$\csc^{-1}(-x) = -\csc^{-1}(x)$$

$$\arcsin x = \begin{cases} \arccos \sqrt{1 - x^2} & \text{si } 0 \le x \le 1 \\ -\arccos \sqrt{1 - x^2} & \text{si } -1 \le x \le 0 \\ \arctan \frac{x}{\sqrt{1 - x^2}} & \text{si } -1 < x < 1 \end{cases} \\ \arctan \frac{x}{\sqrt{1 - x^2}} - \pi \sin - 1 \le x < 0 \end{cases}$$

$$\arccos x = \begin{cases} \arcsin \sqrt{1 - x^2} & \text{si } 0 \le x \le 1 \\ \pi - \arcsin \sqrt{1 - x^2} & \text{si } 0 \le x \le 1 \end{cases}$$

$$\arctan \frac{x}{\sqrt{1 - x^2}} \sin 0 < x < 1$$

$$\arctan \frac{x}{\sqrt{1 - x^2}} \sin 0 < x < 1$$

$$\arctan \frac{x}{\sqrt{1 - x^2}} \sin 0 < x < 1$$

$$\arctan \frac{x}{\sqrt{1 - x^2}} \sin 0 < x < 1$$

$$\arctan \frac{x}{\sqrt{1 - x^2}} \sin 0 < x < 1$$

$$\arctan \frac{x}{\sqrt{1 - x^2}} \sin 0 < x < 1$$

$$\arctan \frac{x}{\sqrt{1 - x^2}} \sin 0 < x < 1$$

$$\arctan \frac{x}{\sqrt{1 - x^2}} \sin 0 < x < 0$$

$$\arctan \frac{1}{\sqrt{1 + x^2}} \sin x > 0$$

$$\arctan \frac{1}{x} \sin x > 0$$

$$\arctan \frac{1}{x} \sin x > 0$$

$$\arctan \frac{1}{x} \sin x > 0$$

$$\pi + \arctan \frac{1}{x} \sin x < 0$$

Addictions et soustractions:

$$\arcsin x + \arcsin y = \arcsin \left(x \sqrt{1 - y^2} + y \sqrt{1 - x^2} \right) \quad pour \ x^2 + y^2 \le 1$$

$$\arccos x \pm \arccos y = \pm \arccos \left[xy \mp \sqrt{(1 - x^2)(1 - y^2)} \right] \quad pour \ x \pm y \ge 0$$

$$\arctan x + \arctan y = \arctan \frac{x + y}{1 - xy} \quad pour \ xy < 1$$

$$\arctan x - \arctan y = \arctan \frac{x - y}{1 + xy} \quad pour \ xy > -1$$

Dérivées:

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \quad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}} \quad \frac{d}{dx}\arctan x = \frac{1}{1+x^2} \quad \frac{d}{dx}\operatorname{arccot} x = -\frac{1}{1+x^2}$$

Intégrales:

$$\int \arcsin x \, dx = x \arcsin x + \sqrt{1 - x^2} + C \qquad \int \arccos x \, dx = x \arccos x - \sqrt{1 - x^2} + C$$

$$\int \arctan x \, dx = x \arctan x - \frac{1}{2} \ln(1 + x^2) + C$$

$$\int \arccos x \, dx = x \arccos x + \frac{1}{2} \ln(1 + x^2) + C$$

Avec C la constance

D.L.:

$$\arcsin x = x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \times 3}{2 \times 4} \frac{x^5}{5} + \frac{1 \times 3 \times 5}{2 \times 4 \times 6} \frac{x^7}{7} + \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)} \frac{x^{2n+1}}{2n+1} + \dots \quad (|x| < 1),$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{2n-1} + \dots \quad (|x| < 1),$$

$$\arctan x = \frac{\pi}{2} - \frac{1}{x} + \frac{1}{3x^3} - \frac{1}{5x^5} + \dots + \frac{(-1)^n 1}{(2n-1)x^{2n-1}} + \dots \quad (|x| > 1)$$

L'extension pour trouver :

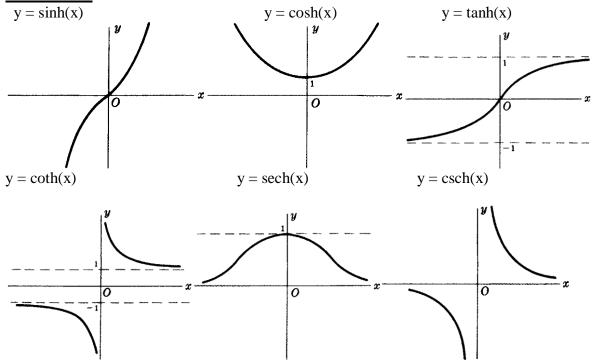
 $\arccos x = \frac{\pi}{2} - \arcsin x$ et $\operatorname{arccot} x = \frac{\pi}{2} - \arctan x$

IX) Fonction hyperbolique:

Définitions:

$$\sinh x = \frac{e^x - e^{-x}}{2} \quad \cosh x = \frac{e^x + e^{-x}}{2} \quad \tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} \quad \coth x = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$
(cotangent)
$$\operatorname{sech} x = \frac{2}{e^x + e^{-x}}$$
(secant)
$$\operatorname{csch} x = \frac{2}{e^x - e^{-x}}$$
(cosecant)

Les courbes:



Relations de fonctions hyperboliques:

$$\tanh x = \frac{\sinh x}{\cosh x} \quad \coth x = \frac{1}{\tanh x} = \frac{\cosh x}{\sinh x} \quad \operatorname{sech} x = \frac{1}{\cosh x} \quad \operatorname{csch} x = \frac{1}{\sinh x}$$

$$\cosh^2 x - \sinh^2 x = 1 \quad \operatorname{sech}^2 x + \tanh^2 x = 1 \quad \coth^2 x - \operatorname{csch}^2 x = 1$$

Fonctions négative:

$$\sinh(-x) = -\sinh(x)$$
 $\cosh(-x) = \cosh(x)$ $\tanh(-x) = -\tanh(x)$
 $\operatorname{csch}(-x) = -\operatorname{csch}(x)$ $\operatorname{sech}(-x) = \operatorname{sech}(x)$ $\coth(-x) = -\coth(x)$

Relations entre fonctions hyperboliques pour $(x \ge 0)$:

$$\sinh x = \sqrt{\cosh^{2}(x) - 1} = \frac{\tanh x}{\sqrt{1 - \tanh^{2} x}} = \frac{1}{\sqrt{\coth^{2} x - 1}}$$

$$\cosh x = \sqrt{\sinh^{2}(x) + 1} = \frac{\frac{1}{\sqrt{1 - \tanh^{2} x}}}{\frac{1}{\sqrt{1 - \tanh^{2} x}}} = \frac{\coth(x)}{\coth(x)}$$

$$\tanh x = \frac{\sinh x}{\sqrt{\sinh^{2} x + 1}} = \frac{\sqrt{\cosh^{2} x - 1}}{\cosh x} = \frac{1}{\coth x}$$

$$\coth x = \frac{\sqrt{\sinh^{2} x + 1}}{\sinh x} = \frac{\cosh x}{\sqrt{\cosh^{2} x - 1}} = \frac{1}{\tanh x}$$

Addition:

$$\sinh(x \pm y) = \sinh x \cosh y \pm \sinh y \cosh x \quad \cosh(x \pm y) = \cosh x \cosh y \pm \sinh y \sinh x$$

$$\tanh(x \pm y) = \frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y} \qquad \coth(x \pm y) = \frac{\coth x \coth y \pm 1}{\coth y \pm \coth x}$$

Addition et soustraction:

$$\sinh x \pm \sinh y = 2 \sinh \left(\frac{x \pm y}{2}\right) \cosh \left(\frac{x \pm y}{2}\right)$$
$$\cosh x + \cosh y = 2 \cosh \left(\frac{x + y}{2}\right) \cosh \left(\frac{x - y}{2}\right)$$
$$\cosh x - \cosh y = 2 \sinh \left(\frac{x + y}{2}\right) \sinh \left(\frac{x - y}{2}\right)$$

$$\sinh^2 x - \sinh^2 x = \cosh^2 x - \cosh^2 y = \sinh(x+y)\sinh(x-y)$$

$$\sinh^2 x + \cosh^2 y = \cosh(x+y)\cosh(x-y)$$

$$(\cosh x \pm \sinh x)^n = \cosh(nx) \pm \sinh(nx)$$

$$\tanh x \pm \tanh y = \frac{\sinh(x\pm y)}{\cosh x \cosh y}$$

$$\coth x \pm \coth y = \pm \frac{\sinh(x\pm y)}{\sinh x \sinh y}$$

$$où n = 0, \pm 1, \pm 2, ...$$

Produits:

$$\sinh x \sinh y = \frac{1}{2} [\cosh(x+y) - \cosh(x-y)]$$

$$\cosh x \cosh y = \frac{1}{2} [\cosh(x+y) + \cosh(x-y)]$$

$$\sinh x \cosh y = \frac{1}{2} [\sinh(x+y) + \sinh(x-y)]$$

Puissances:

$$\cosh^{2n} x = \frac{1}{2^{2n-1}} \sum_{k=0}^{n-1} C_{2n}^k \cosh[2(n-k)x] + \frac{1}{2^{2n}} C_{2n}^n$$

$$\cosh^{2n+1} x = \frac{1}{2^{2n}} \sum_{k=0}^{n} C_{2n+1}^k \cosh[(2n-2k+1)x]$$

$$\sinh^{2n} x = \frac{1}{2^{2n-1}} \sum_{k=0}^{n-1} (-1)^k C_{2n}^k \cosh[2(n-k)x] + \frac{(-1)^n}{2^{2n}} C_{2n}^n$$

$$\sinh^{2n+1} x = \frac{1}{2^{2n}} \sum_{k=0}^{n} (-1)^k C_{2n+1}^k \cosh[(2n-2k+1)x]$$

Où n = 1, 2, ... et C_m^k sont les coefficients binomiaux

$$\cosh^{2} x = \frac{1}{2} \cosh 2x - \frac{1}{2}$$

$$\cosh^{3} x = \frac{1}{4} \cosh 3x + \frac{3}{4} \cosh x$$

$$\sinh^{3} x = \frac{1}{4} \cosh 3x - \frac{3}{4} \sinh x$$

$$\cosh^{4} x = \frac{1}{8} \cosh 4x + \frac{1}{2} \cosh 2x + \frac{3}{8}$$

$$\cosh^{5} x = \frac{1}{16} \cosh 5x + \frac{5}{16} \cosh 3x + \frac{5}{8} \cosh x$$

$$\sinh^{5} x = \frac{1}{2} \sinh 2x - \frac{1}{2} \sinh x$$

$$\sinh^{3} x = \frac{1}{4} \cosh 3x - \frac{3}{4} \sinh x$$

$$\sinh^{4} x = \frac{1}{8} \sinh 4x + \frac{1}{2} \sinh 2x + \frac{3}{8}$$

$$\cosh^{5} x = \frac{1}{16} \cosh 5x + \frac{5}{16} \cosh 3x + \frac{5}{8} \sinh x$$

Multiples:

$$\cosh nx = 2^{n-1} \cosh^n x + \frac{n}{2} \sum_{k=0}^{\frac{n}{2}} \frac{(-1)^{k+1}}{k+1} C_{n-k-2}^{k-2} 2^{n-2k-2} (\cosh x)^{n-2k-2}$$

$$\sinh nx = \sinh x \sum_{k=0}^{\frac{n-1}{2}} 2^{n-k-1} C_{n-k-1}^{k} 2^{n-2k-2} (\cosh x)^{n-2k-1}$$
Où n=1, 2, ... et C_m^k sont les coefficients binomiaux

$$\cosh 2x = 2 \cosh^2 x - 1$$
 $\sinh 2x = 2 \sinh x \cosh x$ $\sinh 3x = 3 \sinh x + 4 \sinh^3 x$ $\cosh 4x = 1 - 8 \cosh^2 x + 8 \cosh^4 x$ $\sinh 4x = 4 \cosh(x) (\sinh x + 2 \sinh^3 x)$ $\cosh 5x = 5 \cosh x - 20 \cosh^3 x + 16 \cosh^5 x$ $\sinh 5x = 5 \sinh x + 20 \sinh^3 x + 16 \sinh^5 x$

$$\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$$
$$\tanh 3x = \frac{3 \tanh x + \tanh^3 x}{1 + 3\tanh^2 x}$$

$$\tanh 4x = \frac{4 \tanh x + 4 \tanh^3 x}{1 + 6 \tanh^2 x + \tanh^4 x}$$

Angle double:

$$\sinh 2x = 2 \sinh x \cosh x$$
 $\cosh 2x = \cosh^2 x + \sinh^2 x = 2 \cosh^2 x - 1 = 1 + 2 \sinh^2 x$
 $\tanh 2x = \frac{2 \tanh x}{1 + \tanh^2 x}$

Angle 1/2:

$$\sinh \frac{x}{2} = \pm \sqrt{\frac{\cosh x - 1}{2}} \quad [+si \ x > 0, -si \ x < 0]$$

$$\cosh \frac{x}{2} = \sqrt{\frac{\cosh x + 1}{2}}$$

$$\tanh \frac{x}{2} = \pm \sqrt{\frac{\cosh x - 1}{\cosh x + 1}} \quad [+si \ x > 0, -si \ x < 0] = \frac{\sinh x}{\cosh x + 1} = \frac{\cosh x - 1}{\sinh x}$$

Expression transverse:

$$\sinh x = \sqrt{\cosh^2 x - 1} = \frac{\tanh x}{\sqrt{1 - \tanh^2 x}} = \frac{1}{\sqrt{\coth^2 x - 1}} = \frac{\sqrt{1 - \operatorname{sech}^2 x}}{\operatorname{sech} x} = \frac{1}{\operatorname{csch} x}$$

$$\cosh x = \sqrt{1 + \cosh^2 x} = \frac{\coth x}{\sqrt{\coth^2 x - 1}} = \frac{1}{\sqrt{1 - \tanh^2 x}} = \frac{\sqrt{1 + \operatorname{csch}^2 x}}{\operatorname{csch} x} = \frac{1}{\operatorname{sech} x}$$

$$\tanh x = \sqrt{1 - \operatorname{sech}^2 x} = \frac{\tanh x}{\sqrt{1 + \tanh^2 x}} = \frac{1}{\sqrt{1 + \operatorname{csch}^2 x}} = \frac{\sqrt{\cosh^2 x - 1}}{\cosh x} = \frac{1}{\coth x}$$

$$\coth x = \sqrt{1 + \operatorname{csch}^2 x} = \frac{\cosh x}{\sqrt{1 + \cosh^2 x}} = \frac{1}{\sqrt{1 - \operatorname{sech}^2 x}} = \frac{\sqrt{\sinh^2 x + 1}}{\sinh x} = \frac{1}{\tanh x}$$

$$\operatorname{sech} x = \sqrt{1 - \tanh^2 x} = \frac{\operatorname{csch} x}{\sqrt{1 + \cosh^2 x}} = \frac{1}{\sqrt{1 + \sinh^2 x}} = \frac{\sqrt{\coth^2 x - 1}}{\coth x} = \frac{1}{\cosh x}$$

$$\operatorname{csch} x = \sqrt{\coth^2 x - 1} = \frac{\operatorname{sech} x}{\sqrt{1 - \operatorname{sech}^2 x}} = \frac{1}{\sqrt{1 - \tanh^2 x}} = \frac{\sqrt{1 - \tanh^2 x}}{\tanh x} = \frac{1}{\sinh x}$$

Dérivées:

$$d\frac{\sinh x}{dx} = \cosh x$$
 $d\frac{\cosh x}{dx} = \sinh x$ $d\frac{\tanh x}{dx} = \frac{1}{\cosh^2 x}$ $d\frac{\coth x}{dx} = -\frac{1}{\sinh^2 x}$

Intégrales:

$$\int \sinh x \, dx = \cosh x + C \qquad \int \cosh x \, dx = \sinh x + C$$

$$\int \tanh x \, dx = \ln \cosh x + C \qquad \int \tanh x \, dx = \ln |\sinh x| + C$$

<u>D.L.:</u>

$$\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$$

$$(|x| < \infty)$$

$$\sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots \tag{|x| < \infty}$$

$$sinh x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$$

$$tanh x = x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17x^7}{315} + \dots + (-1)^{n-1} \frac{2^{2n}(2^{2n}-1)|B_{2n}|x^{2n-1}}{(2n)!} + \dots$$

$$coth x = \frac{1}{x} + \frac{x}{3} - \frac{x^3}{45} + \frac{2x^5}{945} + \dots + (-1)^{n-1} \frac{2^{2n}|B_{2n}|x^{2n-1}}{(2n)!} + \dots$$

$$(|x| < \infty)$$

Avec B_n le nombre de Bernoulli.

Relations de trigonométrie:

$$\sinh(ix) = i\sin x$$
 $\cosh(ix) = \cos x$ $\tanh(ix) = i\tan x$ $\coth(ix) = -i\cot x$, $i^2 = -1$ $\sin(ix) = i\sinh x$ $\cos(ix) = \cosh x$ $\tan(ix) = i\tanh x$ $\csc(ix) = -i\operatorname{csch} x$ $\sec(ix) = \operatorname{sech} x$

Périodicité :

$$\sinh(x + 2k\pi i) = \sinh x$$
 $\cosh(x + 2k\pi i) = \cosh x$ $\tanh(x + k\pi i) = \tanh x$
 $\operatorname{csch}(x + 2k\pi i) = \operatorname{csch} x$ $\operatorname{sech}(x + 2k\pi i) = \operatorname{sech} x$ $\coth(x + k\pi i) = \coth x$

X) Fonction arc trigonométrique:

Les notations:

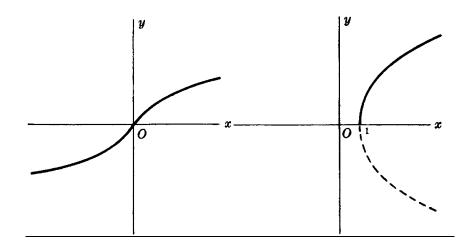
 $\arcsin x \equiv \sinh^{-1} x$ (inverse du sinus hyperbolique) $\operatorname{arccosh} x \equiv \cosh^{-1} x$ (inverse du cosinus hyperbolique) $\operatorname{arctanh} x \equiv \tanh^{-1} x$ (inverse du tangente hyperbolique) $\operatorname{arccoth} x \equiv \operatorname{coth}^{-1} x$ (inverse du cotangente hyperbolique)

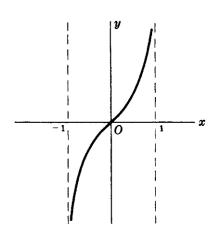
Les relations de bases:

$$\operatorname{arcsinh}(-x) = -\operatorname{arcsinh} x$$
 $\operatorname{arctanh}(-x) = -\operatorname{arctanh} x$ $\operatorname{arcoth}(-x) = -\operatorname{arctanh}(x)$
 $\operatorname{arccsch} x = \operatorname{arcsin} \frac{1}{x}$ $\operatorname{arcsech} x = \operatorname{arccosh} \frac{1}{x}$ $\operatorname{arccoth} x = \operatorname{arctanh} \frac{1}{x}$

Les courbes:

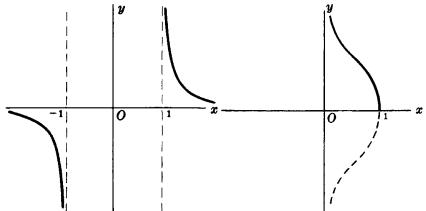
$$y=\sinh^{-1}x$$
 $y=\cosh^{-1}x$ $y=\tanh^{-1}x$

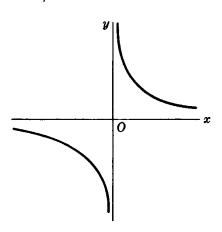




$$y = coth^{-1}x$$

$$y = csch^{-1} x$$





Relations:

$$\operatorname{arcsinh} x = \ln\left(x + \sqrt{x^2 + 1}\right)$$
$$\operatorname{arccosh} x = \ln\left(x + \sqrt{x^2 - 1}\right)$$

$$-\infty < x < +\infty$$

$$\operatorname{arccosh} x = \ln\left(x + \sqrt{x^2 - 1}\right)$$

$$\operatorname{arctanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$$

$$-1 < x < 1$$

$$\operatorname{arccottanh} x = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right)$$

$$x > 1$$
 ou $x < -1$

$$\operatorname{arcsech}(x) = \ln\left(\frac{1}{x} + \sqrt{\frac{1}{x^2} - 1}\right)$$

$$0 < x \le 1$$

$$\operatorname{arccsch}(x) = \ln\left(\frac{1}{x} + \sqrt{\frac{1}{x^2} + 1}\right)$$

$$x \neq 0$$

$$\operatorname{arcsinh} x = \operatorname{arccosh} \sqrt{x^2 + 1} = \operatorname{arctanh} \frac{x}{\sqrt{x^2 + 1}}$$

 $\operatorname{arccosh} x = \operatorname{arcsinh} \sqrt{x^2 - 1} = \operatorname{arctanh} \frac{\sqrt{x^2 + 1}}{x}$

$$\sqrt{x^2 - 1} = \operatorname{arcsinh} \sqrt{x^2 - 1}$$

$$\operatorname{arctanh} x = \operatorname{arcsinh} \frac{x}{\sqrt{x^2 - 1}} = \operatorname{arccosh} \frac{x}{\sqrt{1 - x^2}} = \operatorname{arccoth} \frac{1}{x}$$

Addition et soustraction:

$$\operatorname{arcsinh} x \pm \operatorname{arcsinh} y = \operatorname{arcsinh} \left(x\sqrt{1+y^2} \pm y\sqrt{1+x^2} \right)$$

$$\operatorname{arccosh} x \pm \operatorname{arcosh} y = \operatorname{arccosh} \left(xy \pm \sqrt{(x^2 - 1)(y^2 - 1)} \right)$$

 $\operatorname{arcsinh} x \pm \operatorname{arccosh} y = \operatorname{arcsinh} \left(xy \pm \sqrt{(x^2 + 1)(y^2 - 1)} \right)$

 $\operatorname{arctanh} x \pm \operatorname{arctanh} y = \operatorname{arctanh} \frac{x \pm y}{1 \pm xy}$ $\operatorname{arctanh} x \pm \operatorname{arccoth} y = \operatorname{arctanh} \frac{xy \pm 1}{y \pm x}$

Dérivées:

$$\frac{d}{dx}\operatorname{arcsinh} x = \frac{1}{\sqrt{x^2 + 1}} \qquad \frac{d}{dx}\operatorname{arccosh} x = \frac{1}{\sqrt{x^2 - 1}}$$

$$\frac{d}{dx}\operatorname{arctanh} x = \frac{1}{1 - x^2} \quad (x^2 < 1) \qquad \frac{d}{dx}\operatorname{arccoth} x = \frac{1}{1 - x^2} \quad (x^2 > 1)$$

Intégrales:

$$\int \operatorname{arcsinh} x \, dx = x \operatorname{arcsinh} x - \sqrt{1 + x^2} + C$$

$$\int \operatorname{arccosh} x \, dx = x \operatorname{arccosh} x - \sqrt{x^2 - 1} + C$$

$$\int \operatorname{arctanh} x \, dx = x \operatorname{arctanh} x + \frac{1}{2} \ln(1 - x^2) + C$$

$$\int \operatorname{arccoth} x \, dx = x \operatorname{arccoth} x + \frac{1}{2} \ln(x^2 - 1) + C$$

D.L.:

$$\arcsin x = x - \frac{1}{2} \frac{x^3}{3} + \frac{1 \times 3}{2 \times 4} \frac{x^5}{5} - \dots + (-1)^n \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)} \frac{x^{2n+1}}{2n+1} + \dots \qquad (|x| < 1)$$

$$\arcsin x = \ln(2x) + \frac{1}{2} \frac{1}{2x^2} + \frac{1 \times 3}{2 \times 4} \frac{1}{4x^4} - \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)} \frac{1}{2nx^{2n}} + \dots \qquad (|x| > 1)$$

$$\operatorname{arccosh} x = \ln(2x) + \frac{1}{2} \frac{1}{2x^2} - \frac{1 \times 3}{2 \times 4} \frac{1}{4x^4} - \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)} \frac{1}{2nx^{2n}} + \dots \qquad (|x| > 1)$$

$$\arcsin x = \ln(2x) + \frac{1}{2} \frac{1}{2x^2} + \frac{1 \times 3}{2 \times 4} \frac{1}{4x^4} - \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)} \frac{1}{2nx^{2n}} + \dots$$
 (|x| > 1)

$$\operatorname{arccosh} x = \ln(2x) + \frac{1}{2} \frac{1}{2x^2} - \frac{1 \times 3}{2 \times 4} \frac{1}{4x^4} - \dots + \frac{1 \times 3 \times \dots \times (2n-1)}{2 \times 4 \times \dots \times (2n)} \frac{1}{2nx^{2n}} + \dots$$
 (|x| > 1)

$$\operatorname{arctanh} x = x + \frac{x}{3} + \frac{x}{5} + \frac{x}{7} + \dots + \frac{x^{2n+1}}{2n+1} + \dots$$
 (|x| < 1)

$$\operatorname{arccoth} x = \frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \frac{1}{7x^7} + \dots + \frac{1}{(2n+1)x^{2n+1}} + \dots$$
 (|x| < 1)

XI) Dérivées:

Définitions:

$$\frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

Lois:

$$\frac{d(c)}{dx} = 0$$

$$\frac{d(cx)}{dx} = c$$

$$\frac{d(cx^n)}{dx} = ncx^{n-1}$$

$$\frac{d(u \pm v \pm w \pm \cdots)}{dx} = \frac{du}{dx} \pm \frac{dv}{dx} \pm \frac{dw}{dx} \pm \cdots$$

$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{d}{dx}(uvw) = uv\frac{dw}{dx} + uw\frac{dv}{dx} + vw\frac{du}{dx}$$

$$\frac{d}{dx}(\frac{u}{v}) = \frac{v(\frac{du}{dx}) - u(\frac{dv}{dx})}{v^2}$$

$$\frac{d}{dx}(u^n) = nu^{n-1}\frac{du}{dx}$$

$$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$$

$$\frac{du}{dx} = \frac{1}{\frac{du}{du}}$$

$$\frac{dy}{dx} = \frac{\frac{dy}{du}}{\frac{du}{du}}$$

$$\frac{dy}{dx} = \frac{\frac{dy}{du}}{\frac{du}{du}}$$

$$\frac{dy}{dx} = \frac{\frac{dy}{du}}{\frac{du}{du}}$$

$$\frac{dy}{dx} = \frac{1}{\frac{du}{du}}$$

Trigonométrie et inverse trigonométrie:

$$\frac{d}{dx}\sin u = \cos u \frac{du}{dx}$$

$$\frac{d}{dx}\sin u = \cos u \frac{du}{dx}$$

$$\frac{d}{dx}\cos u = -\sin u \frac{du}{dx}$$

$$\frac{d}{dx}\tan u = \sec^2 u \frac{du}{dx} = \frac{\frac{du}{dx}}{\cos^2 u} = \left(\frac{du}{dx}\right)(1 + \tan^2 u)$$

$$\frac{d}{dx}\cot u = -\csc^2 u \frac{du}{dx}$$

$$\frac{d}{dx}\sec u = \sec u \tan u \frac{du}{dx}$$

$$\frac{d}{dx}\csc u = -\csc u \cot u \frac{du}{dx}$$

$$\frac{d}{dx}\csc u = -\csc u \cot u \frac{du}{dx}$$

$$\frac{d}{dx}\sin^{-1}u = \frac{1}{\sqrt{1 - u^2}}\frac{du}{dx} \left[-\frac{\pi}{2} < \sin^{-1}u < +\frac{\pi}{2}\right]$$

$$\frac{d}{dx}\cos^{-1}u = \frac{-1}{\sqrt{1 - u^2}}\frac{du}{dx} \left[0 < \cos^{-1}u < \pi\right]$$

$$\frac{d}{dx}\tan^{-1}u = \frac{1}{1 + u^2}\frac{du}{dx} \left[-\frac{\pi}{2} < \tan^{-1}u < +\frac{\pi}{2}\right]$$

$$\frac{d}{dx}\cot^{-1}u = \frac{-1}{1 + u^2}\frac{du}{dx} \left[0 < \cot^{-1}u < \pi\right]$$

$$\frac{d}{dx}\sec^{-1}u = \frac{1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx} = \frac{\pm 1}{u\sqrt{u^2 - 1}}\frac{du}{dx} \begin{bmatrix} +\sin 0 < \sec^{-1}u < \frac{\pi}{2} \\ -\sin \frac{\pi}{2} < \sec^{-1}u < \pi \end{bmatrix}$$

$$\frac{d}{dx}\csc^{-1}u = \frac{-1}{|u|\sqrt{u^2 - 1}}\frac{du}{dx} = \frac{\mp 1}{u\sqrt{u^2 - 1}}\frac{du}{dx} \begin{bmatrix} -\sin 0 < \csc^{-1}u < \frac{\pi}{2} \\ +\sin \frac{-\pi}{2} < \csc^{-1}u < 0 \end{bmatrix}$$

$$\frac{d}{dx}\arccos u = \frac{1}{\sqrt{1 - u^2}}\frac{du}{dx}$$

$$\frac{d}{dx}\arcsin u = \frac{1}{u^2 + 1}\frac{du}{dx}$$

Exponentielle et logarithmique:

$$\frac{\frac{d}{dx}\log_{a}u = \frac{\log_{a}e}{u}\frac{du}{dx}}{u} = a \neq 0,1 \text{ or } e= 2,71828....}$$

$$\frac{\frac{d}{dx}\ln u = \frac{d}{dx}\log_{e}u = \frac{1}{u}\frac{du}{dx}}{\frac{d}{dx}}$$

$$\frac{\frac{d}{dx}a^{u} = a^{u}\ln a\frac{du}{dx}}{\frac{d}{dx}}$$

$$\frac{\frac{d}{dx}e^{u} = e^{u}\frac{du}{dx}}{\frac{d}{dx}}$$

$$\frac{\frac{d}{dx}u^{v} = \frac{d}{dx}e^{v\ln u} = e^{v\ln u}\frac{d}{dx}[v\ln u] = vu^{v-1}\frac{du}{dx} + u^{v}\ln u\frac{dv}{dx}$$

Hyperbolique et inverse hyperbolique

$$\frac{d}{dx} \sinh u = \cosh u \frac{du}{dx} \frac{d}{dx} \cosh u = \sinh u \frac{du}{dx} \frac{d}{dx} \tanh u = \operatorname{sech}^{2} u \frac{du}{dx} \frac{d}{dx} \coth u = -\operatorname{csch}^{2} u \frac{du}{dx} \frac{d}{dx} \operatorname{sech}^{2} u = -\operatorname{sech} u \tanh u \frac{du}{dx} \frac{d}{dx} \operatorname{sech}^{2} u = -\operatorname{csch} u \coth u \frac{du}{dx} \frac{d}{dx} \operatorname{sinh}^{-1} u = \frac{1}{\sqrt{u^{2}+1}} \frac{du}{dx} \frac{d}{dx} \operatorname{cosh}^{-1} u = \frac{1}{\sqrt{u^{2}+1}} \frac{du}{dx} \frac{d}{dx} \operatorname{cosh}^{-1} u = \frac{1}{1-u^{2}} \frac{du}{dx} \frac{d}{dx} \operatorname{cosh}^{-1} u = \frac{1}{1-u^{2}} \frac{du}{dx} \qquad [-1 < u < 1] \frac{d}{dx} \operatorname{coth}^{-1} u = \frac{1}{1-u^{2}} \frac{du}{dx} \qquad [u > 1 \text{ ou } u > -1] \frac{d}{dx} \operatorname{sech}^{-1} u = \frac{1}{u\sqrt{1-u^{2}}} \frac{du}{dx} \qquad [-si \operatorname{sech}^{-1} u > 0, 0 < u < 1] \frac{d}{dx} \operatorname{csch}^{-1} u = \frac{-1}{|u|\sqrt{1+u^{2}}} \frac{du}{dx} \qquad [-si u > 0, +si u < 0]$$

Notations:

Dérivées de seconde ordre: $\frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d^2y}{dx^2} = f''(x) = y''$ Dérivées de troisième ordre: $\frac{d}{dx}\left(\frac{d^2y}{dx^2}\right) = \frac{d^3y}{dx^3} = f'''(x) = y'''$ Dérivées de nième ordre: $\frac{d}{dx}\left(\frac{d^{n-1}y}{dx^{n-1}}\right) = \frac{d^ny}{dx^n} = f^{(n)}(x) = y^{(n)}$

Lois de Leibniz:

Soit D^p un opérateur de $\frac{d^p}{dx^p}$ donc $D^p u = \frac{d^p u}{dx^p}$: $D^n(uv) = uD^n v + \binom{n}{1}(Du)(D^{n-1}v) + \binom{n}{2}(D^2u)(D^{n-2}v) + \dots + vD^n u$ Où $\binom{n}{k} = C_n^k = \frac{n!}{k!(n-k)!}$

Comme cas particulier:

$$\frac{d^2}{dx^2}(uv) = u\frac{d^2v}{dx^2} + 2\frac{du}{dx}\frac{dv}{dx} + v\frac{d^2u}{dx^2}$$
$$\frac{d^3}{dx^3}(uv) = u\frac{d^3v}{dx^3} + 3\frac{du}{dx}\frac{d^2v}{dx^2} + 3\frac{d^2u}{dx^2}\frac{dv}{dx} + v\frac{d^3u}{dx^3}$$

Différentiels:

Soit y = f(x) et $\Delta y = f(x + \Delta x) - f(x)$, alors:

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x} = f'(x) + \epsilon = \frac{dy}{dx} + \epsilon \text{ où } \epsilon \to 0 \text{ comme } \Delta x \to 0.$$

$$\Delta y = f'(x)\Delta x + \epsilon \Delta x$$

Lois pour différentiels:

$$d(u \pm v \pm w \pm \cdots) = du \pm dv \pm dw + \cdots$$

$$d(uv) = udv + vdu$$

$$d\left(\frac{u}{v}\right) = \frac{vdu - udv}{v^2}$$

$$d(u^n) = nu^{n-1}du$$

$$d(\sin u) = \cos u du$$

$$d(\cos u) = -\sin u du$$

XII) Intégrale

$$\int a dx = ax + C$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int e^x dx = e^x + C$$

$$\int a^x dx = \frac{a^x}{\ln a} + C$$

$$\int \ln x dx = x \ln x - x + C$$

$$\int \sin x \, dx = -\cos x + C$$

$$\int \cos x \, dx = \sin x + C$$

$$\int \tan x \, dx = \ln(\sec x) + C \quad ou - \ln(\cos x) + C$$

$$\int \cot x \, dx = \ln(\sin x) + C$$

$$\int \sec x \, dx = \ln(\sec x + \tan x) + C$$

$$\int \csc x \, dx = \ln(\csc x - \cot x) + C$$

$$\int \sec^2(x) \, dx = \tan x + C$$

$$\int \sec^2(x) \, dx = -\cot(x) + C$$

$$\int \csc^2(x) \, dx = -\cot(x) + C$$

$$\int \csc^2(x) \, dx = -\cot(x) + C$$

$$\int \cot^2(x) \, dx = -\cot(x) + C$$

XIII) Alphabet Grecs et constantes:

Alphabet Grec:

Nom Grecs	Lettre Grecs		
	Minuscule	Majuscule	
Alpha	α	A	
Beta	β	В	
Gamma	γ	Γ	
Delta	δ	Δ	
Epsilon	ε	Е	
Zêta	ζ	Z	
Êta	η	Н	
Thêta	θ	Θ	
Iota	ι	I	
Карра	κ	К	
Lambda	λ	Λ	
Mu	μ	M	
Nu	ν	N	
Xi	ξ	[13]	

Omicron	0	0
Pi	π	П
Rho	ρ	P
Sigma	σ	Σ
Tau	τ	T
Upsilon	υ	Υ
Phi	φ	Ф
Chi	χ	X
Psi	ψ	Ψ
Omega	ω	Ω

Constantes:

$$\begin{split} \pi &= 3.14159\ 26535\ 89793\ \\ e &= 2,71828\ 18284\ 59045\ = \lim_{\mathbf{n}\to\infty} \left(1+\frac{1}{n}\right)^n = base\ naturel\ du\ logarithmique \\ \gamma &= 0,57721\ 56649\ 01532\ 86060\ 6512\ ... = Constante\ de\ l'Euler \\ &= \lim_{\mathbf{n}\to\infty} (1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}-\ln n) \\ e^{\gamma} &= 1,78107\ 24179\ 90197\ 9852\ ... \\ \sqrt{e} &= 1,64872\ 12707\ 00128\ 1468\ ... \\ \sqrt{\pi} &= \Gamma\left(\frac{1}{2}\right) = 1,77245\ 38509\ 05516\ 02729\ 8167\ ...\ où\ \Gamma\ est\ la\ fonction\ gamma; \\ \Gamma\left(\frac{1}{3}\right) &= 2,67893\ 85347\ 07748\ ... \\ \Gamma\left(\frac{1}{4}\right) &= 3,62560\ 99082\ 21908\ ... \\ 1\ radian &= \frac{180^\circ}{\pi} = 57,29577\ 95130\ 8232\ ...\ ^\circ \\ 1^\circ &= \frac{\pi}{180} radians = 0,01745\ 32925\ 19943\ 29576\ 92\ ...\ radians \end{split}$$

XIV) Produits et facteurs:

$$(x+y)^{n} = x^{n} + nx^{n-1}y + \frac{n(n+1)}{2!}x^{n-2}y^{2} + \frac{n(n-1)(n-2)}{3!}x^{n-3}y^{3} + \dots + y^{n}$$

$$(x+y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x-y)^{2} = x^{2} - 2xy + y^{2}$$

$$(x+y)^{3} = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x-y)^{3} = x^{3} - 3x^{2}y + 3xy^{2} - y^{3}$$

$$(x+y)^{4} = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

$$(x-y)^{4} = x^{4} - 4x^{3}y + 6x^{2}y^{2} - 4xy^{3} + y^{4}$$

$$(x+y)^{5} = x^{5} + 5x^{4}y + 10x^{3}y^{2} + 10x^{2}y^{3} + 5xy^{4} + y^{5}$$

$$(x-y)^{5} = x^{5} - 5x^{4}y + 10x^{3}y^{2} - 10x^{2}y^{3} + 5xy^{4} - y^{5}$$

$$(x+y)^{6} = x^{6} + 6x^{5}y + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6xy^{5} + y^{6}$$

$$(x-y)^{6} = x^{6} - 6x^{5}y + 15x^{4}y^{2} - 20x^{3}y^{3} + 15x^{2}y^{4} - 6xy^{5} + y^{6}$$

$$x^{2} - y^{2} = (x-y)(x+y)$$

$$x^{3} - y^{3} = (x-y)(x^{2} + xy + y^{2})$$

$$x^{3} + y^{3} = (x+y)(x^{2} - xy + y^{2})$$

$$x^{4} - y^{4} = (x-y)(x+y)(x^{2} + y^{2})$$

$$x^{5} - y^{5} = (x - y)(x^{4} + x^{3}y + x^{2}y^{2} + xy^{3} + y^{4})$$

$$x^{5} + y^{5} = (x + y)(x^{4} - x^{3}y + x^{2}y^{2} - xy^{3} + y^{4})$$

$$x^{6} - y^{6} = (x - y)(x + y)(x^{2} + xy + y^{2})(x^{2} - xy + y^{2})$$

$$x^{4} + x^{2}y^{2} + y^{4} = (x^{2} + xy + y^{2})(x^{2} - xy + y^{2})$$

$$x^{4} + 4y^{4} = (x^{2} + 2xy + 2y^{2})(x^{2} - 2xy + 2y^{2})$$

$$x^{2n+1} - y^{2n+1} = (x - y)(x^{2n} + x^{2n-1}y + x^{2n-2}y^{2} + \dots + y^{2n})$$

$$= (x - y)\left(x^{2} - 2xy\cos\left(\frac{2\pi}{2n+1}\right) + y^{2}\right)\left(x^{2} - 2xy\cos\left(\frac{4\pi}{2n+1}\right) + y^{2}\right)\dots\left(x^{2} - 2xy\cos\left(\frac{2n\pi}{2n+1}\right) + y^{2}\right)$$

$$x^{2n+1} + y^{2n+1} = (x + y)(x^{2n} - x^{2n-1}y + x^{2n-2}y^{2} - \dots + y^{2n})$$

$$= (x + y)\left(x^{2} + 2xy\cos\left(\frac{2\pi}{2n+1}\right) + y^{2}\right)\left(x^{2} + 2xy\cos\left(\frac{4\pi}{2n+1}\right) + y^{2}\right)\dots\left(x^{2} + 2xy\cos\left(\frac{2n\pi}{2n+1}\right) + y^{2}\right)$$

$$x^{2n} - y^{2n} = (x - y)(x + y)(x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \cdots)(x^{n-1} - x^{n-2}y + x^{n-3}y^2 - \cdots)$$

$$= (x - y)(x + y)\left(x^2 - 2xy\cos\left(\frac{\pi}{n}\right) + y^2\right)\left(x^2 - 2xy\cos\left(\frac{2\pi}{n}\right) + y^2\right)...\left(x^2 - 2xy\cos\left(\frac{(n - 1)\pi}{n}\right) + y^2\right)$$

$$= \left(x^2 + 2xy\cos\left(\frac{\pi}{2n}\right) + y^2\right)\left(x^2 + 2xy\cos\left(\frac{3\pi}{2n}\right) + y^2\right)...\left(x^2 + 2xy\cos\left(\frac{(2n - 1)\pi}{n}\right) + y^2\right)$$

$$+ y^2$$

$$(x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yx + 2zx$$

$$(x + y + z)^{3}$$

$$= x^{3} + y^{3} + z^{3} + 3x^{2}y + 3xy^{2} + 3y^{2}z + 3yz^{2} + 3z^{2}x + 3zx^{2}$$

$$+ 6xyz$$

$$(x + y + z + w)^2 = x^2 + y^2 + z^2 + w^2 + 2xy + 2xz + 2yz + 2yw + 2zw$$

XV) Les opérateurs :

➤ L'opérateur gradient:

L'opérateur "nabla" ∇ appliqué à un scalaire définit le gradient du scalaire. Il s'agit d'un vecteur. On le note ∇p ou **grad** p^1 ou $\overline{grad}p$.

En coordonnées cartésiennes

$$\nabla p = \frac{\partial p}{\partial x} e_x + \frac{\partial p}{\partial y} e_y + \frac{\partial p}{\partial z} e_z \text{ soit } \nabla p = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} p$$

On pose (e_x, e_y, e_z) étant les trois vecteurs unitaires pour les coordonnées cartésiennes (x, y, z).

• En coordonnées cylindriques

$$\nabla p = \frac{\partial p}{\partial r} e_r + \frac{1}{r} \frac{\partial p}{\partial \theta} e_\theta + \frac{\partial p}{\partial z} e_z$$

On pose (e_r, e_θ, e_z) étant les trois vecteurs unitaires pour les coordonnées cylindriques (r, θ, z) .

• En coordonnées sphériques

$$\nabla p = \frac{\partial p}{\partial r} e_r + \frac{1}{r} \frac{\partial p}{\partial \theta} e_{\theta} + \frac{1}{r \sin \theta} \frac{\partial p}{\partial \phi} e_{\phi}$$

On pose (e_r, e_θ, e_ϕ) étant les trois vecteurs unitaires pour les coordonnées sphériques (r, θ, ϕ) .

> L'opérateur divergence:

Le produit scalaire de l''opérateur "nabla" ∇ par un vecteur définit la divergence du vecteur. La divergence (également noté div) d'un vecteur est un scalaire. Pour le vecteur v, elle s'écrit :

• En coordonnées cartésiennes

$$\nabla \cdot v = div \ v = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

Avec $v = v_x e_x + v_y e_y + v_z e_z$

En coordonnées cylindriques

$$\nabla \cdot v = div \ v = \frac{1}{r} \frac{\partial (rv_r)}{\partial r} + \frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{\partial v_z}{\partial z}$$

Avec $v = v_r e_r + v_\theta e_\theta + v_z e_z$

En coordonnées sphériques

$$\nabla \cdot v = div \ v = \frac{1}{r^2} \frac{\partial (r^2 v_r)}{\partial r} + \frac{1}{r \sin(\theta)} \frac{\partial (\sin(\theta) v_{\theta)}}{\partial \theta} + \frac{1}{r \sin(\theta)} \frac{\partial v_z}{\partial z}$$

Avec $v = v_r e_r + v_\theta e_\theta + v_\phi e_\phi$

• Quelques opérations

¹ En gras ce qui signifie que c'est un vecteur

Pour 2 vecteurs
$$u = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}$$
 et $v = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$, le produit scalaire $u.v = \begin{pmatrix} u_x \\ u_y \\ u_z \end{pmatrix}^t \cdot \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = u_x v_x + u_y v_y + u_z v_z$

$$Donc \nabla \cdot v = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} \end{pmatrix} \cdot \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}$$

> L'opérateur laplacien :

Il s'agit d'un opérateur différentiel, notée Δ , qui est appliqué à un scalaire.

• En coordonnées cartésiennes

$$\Delta p = \frac{\partial^2 p}{\partial x^2} + \frac{\partial^2 p}{\partial y^2} + \frac{\partial^2 p}{\partial z^2}$$

• En coordonnées cylindriques

$$\Delta p = \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial p}{\partial r}) + \frac{1}{r^2} \frac{\partial^2 p}{\partial \theta^2} + \frac{\partial^2 p}{\partial z^2}$$

• En coordonnées sphériques

$$\Delta p = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial p}{\partial r}) + \frac{1}{r^2 sin\theta} \frac{\partial}{\partial \theta} \left(sin\theta \frac{\partial p}{\partial \theta} \right) + \frac{1}{r^2 sin^2(\theta)} \frac{\partial^2 p}{\partial \theta^2}$$

> L'opérateur rotationnel:

Le produit vectoriel de l'opérateur "nabla" ∇ par un vecteur définit le rotationnel du vecteur. Le rotationnel (également noté rot) d'un vecteur est un vecteur. Pour le vecteur v, il s'écrit :

• En coordonnées cartésiennes

$$\nabla \wedge v = rotv = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) e_x + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) e_y + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) e_z$$

• En coordonnées cylindriques

$$\nabla \wedge v = rotv = \left(\frac{1}{r}\frac{\dot{\partial}v_z}{\partial\theta} - \frac{\partial v_\theta}{\partial z}\right)e_r + \left(\frac{\partial v_r}{\partial z} - \frac{\partial v_z}{\partial r}\right)e_\theta + \frac{1}{r}\left(\frac{\partial (rv_\theta)}{\partial r} - \frac{\partial v_r}{\partial\theta}\right)e_z$$

• En coordonnées sphériques

$$\begin{array}{c} \nabla \wedge v = rotv = \\ \frac{1}{rsin\theta} \bigg(\frac{\partial (sin\theta v_{\phi})}{\partial \theta} - \frac{\partial v_{\theta}}{\partial \phi} \bigg) e_r + \frac{1}{r} \bigg(\frac{1}{sin\theta} \frac{\partial v_r}{\partial \phi} - \frac{\partial (rv_{\phi})}{\partial r} \bigg) e_{\theta} + \frac{1}{r} \bigg(\frac{\partial (rv_{\theta})}{\partial r} - \frac{\partial v_r}{\partial \theta} \bigg) e_{\phi} \end{array}$$

> Quelques relations:

- grad(f.g) = fgrad(g) + ggrad(f)
- $div(f.\vec{g}) = fdiv(\vec{g}) + grad(f).\vec{g}$
- $rot(f\vec{q}) = frot(\vec{q}) + grad(f) \land \vec{q}$

- $\Delta(fg) = f\Delta g + 2grad(f) \cdot grad(g) + g\Delta f$
- $\operatorname{div}(\vec{f} \wedge \vec{q}) = \operatorname{rot}(\vec{f}) \cdot \vec{q} \vec{f} \cdot \operatorname{rot}(\vec{q})$
- $rot(rot \vec{v}) = grad(div \vec{v}) \Delta \vec{v}$
- $div(\mathbf{rot}\ \vec{f}) = 0$
- $\mathbf{rot}(\mathbf{grad}\ \mathbf{f}) = \overrightarrow{\mathbf{0}}$
- $rot(f \ grad \ g) = grad \ f \land grad \ g$

Formules portant sur un champ:

1.
$$\vec{\nabla} \cdot (\vec{\nabla} U) = \vec{\nabla}^2 U$$
 soit $div(\vec{grad}U) = \Delta U$

2.
$$\vec{\nabla} \wedge (\vec{\nabla} U) = \vec{0}$$
 soit $\vec{rot}(\vec{grad} U) = \vec{0}$

3.
$$\vec{\nabla} \cdot (\vec{\nabla} \wedge \vec{a}) = \vec{0}$$
 soit div $(\vec{rot} \vec{a}) = \vec{0}$

4.
$$\vec{\nabla} \wedge (\vec{\nabla} \wedge \vec{a}) = \vec{\nabla}(\vec{\nabla} \cdot \vec{a}) - \vec{\nabla}^2 \vec{a}$$
 soit $\vec{rot}(\vec{rot} \vec{a}) = \vec{grad}(\vec{div} \vec{a}) - \Delta \vec{a}$

Formules portant sur deux champs:

1.
$$\vec{\nabla}(UV) = V\vec{\nabla}(U) + U\vec{\nabla}(V)$$
 soit $\overrightarrow{grad}(UV) = V \overrightarrow{grad}U + U \overrightarrow{grad}V$
2. $\vec{\nabla}.(U\vec{a}) = \vec{a}(\vec{\nabla}U) + U(\vec{\nabla}.\vec{a})$ soit $\overrightarrow{div}(U\vec{a}) = \overrightarrow{grad}U.\vec{a} + U\overrightarrow{div}\vec{a}$

2.
$$\vec{\nabla} \cdot (\vec{U}\vec{a}) = \vec{a}(\vec{\nabla}\vec{U}) + \vec{U}(\vec{\nabla}\cdot\vec{a})$$
 soit div $(\vec{U}\vec{a}) = \vec{g}\vec{r}\vec{a}\vec{d}\vec{U}\cdot\vec{a} + \vec{U}\vec{d}\vec{v}\vec{a}$

3.
$$\vec{\nabla} \wedge (\vec{U}\vec{a}) = (\vec{\nabla}\vec{U}) \wedge \vec{a} + \vec{U}(\vec{\nabla} \wedge \vec{a})$$
 soit $\vec{rot}(\vec{U}\vec{a}) = \vec{g}\vec{rad} \vec{U} \wedge \vec{a} + \vec{U} \vec{rot} \vec{a}$

4.
$$\vec{\nabla} \cdot (\vec{a} \wedge \vec{b}) = \vec{b} \cdot (\vec{\nabla} \wedge \vec{a}) - \vec{a} \cdot (\vec{\nabla} \wedge \vec{b})$$
 soit div $(\vec{a} \wedge \vec{b}) = \vec{b} \cdot \vec{rot} \vec{a} - \vec{a} \cdot \vec{rot} \vec{b}$

5.
$$\vec{\nabla} \wedge (\vec{a} \wedge \vec{b}) = (\vec{\nabla} \cdot \vec{b})\vec{a} - (\vec{\nabla} \cdot \vec{a})\vec{b} + (\vec{b} \cdot \vec{\nabla})\vec{a} - (\vec{a} \cdot \vec{\nabla})\vec{b}$$
 soit $\vec{rot}(\vec{a} \wedge \vec{b}) = (\vec{div} \vec{b})\vec{a} - (\vec{div} \vec{a})\vec{b} + (\vec{b} \vec{grad})\vec{a} - (\vec{a} \vec{grad})\vec{b}$

6.
$$\vec{\nabla}(\vec{a}.\vec{b}) = \vec{a} \wedge (\vec{\nabla} \wedge \vec{b}) + \vec{b} \wedge (\vec{\nabla} \wedge \vec{a}) + (\vec{b}.\vec{\nabla})\vec{a} + (\vec{a}.\vec{\nabla})\vec{b}$$
 soit $\vec{grad}(\vec{a}.\vec{b}) = \vec{a} \wedge (\vec{rot} \vec{b}) + \vec{b} \wedge (\vec{rot} \vec{a}) + (\vec{b}.\vec{grad})\vec{a} + (\vec{a}.\vec{grad})\vec{b}$

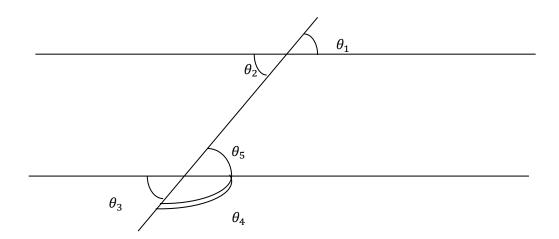
Produit vectoriel de deux vecteurs

Pour 2 vectoriel de deux vecteurs
$$u_{x} = \begin{pmatrix} u_{x} \\ u_{y} \\ u_{z} \end{pmatrix} et \ v = \begin{pmatrix} v_{x} \\ v_{y} \\ v_{z} \end{pmatrix}, \text{ le produit vectoriel}$$

$$u \wedge v = \begin{pmatrix} u_{x} \\ u_{y} \\ u_{z} \end{pmatrix} \wedge \begin{pmatrix} v_{x} \\ v_{y} \\ v_{z} \end{pmatrix} = \begin{pmatrix} u_{y}v_{z} - u_{z}v_{y} \\ u_{z}v_{x} - u_{x}v_{z} \\ u_{x}v_{y} - u_{y}v_{x} \end{pmatrix}$$

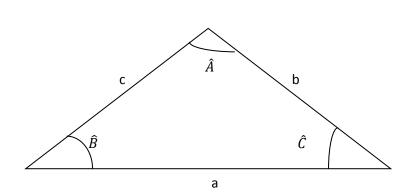
XVI) Géométrie :

a) Relations élémentaires dans les triangles:



 $\theta_1 = \, \theta_2$: angles opposés par le sommet

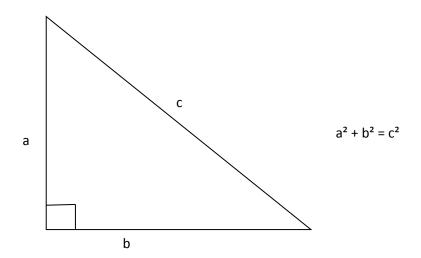
 $\theta_1 = \theta_3$: angles alternes-externes $\theta_1 = \theta_5$: angles correspondants $\theta_2 = \theta_5$: angles alternes-internes $\theta_3 + \theta_4 = \pi$: angles supplémentaires



$$\sin\frac{\hat{A}}{a} = \sin\frac{\hat{C}}{c}$$

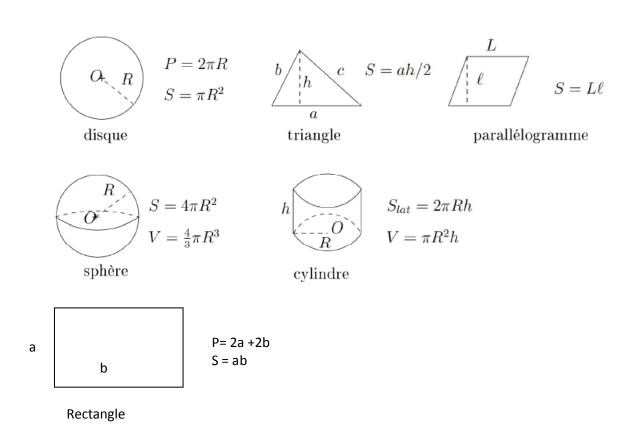
$$\hat{A} + \hat{B} + \hat{C} = \pi$$

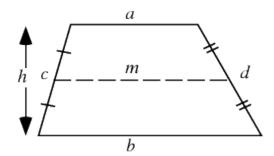
$$c^2 = a^2 + b^2 - 2abcos(\hat{C})$$



b) aires et volumes:

On note P comme le périmètre, S : surface et V : le volume;



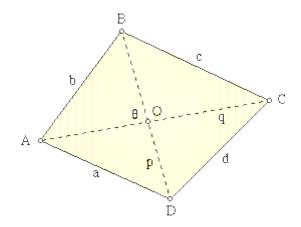


Trapèze

P =
$$a + b + h * (1/\sin\theta + 1/\sin\varphi)$$

S = ½ (a+b) h = mh = $\frac{1}{4} \frac{b+a}{b-a}$
Centroïd : $\bar{x} = \frac{b}{2} + \frac{(2a+b)(c^2-d^2)}{6(b^2-a^2)}$

$$\bar{y} = \frac{(b+2a)h}{3(a+b)}$$



Quadrilateral

Avec BD = p, AC = q, A+B+C+D =
$$360^{\circ}$$

P = $a+b+c+d$
S = $P/2 = (a+b+c+d)/2$

Aire:
$$\frac{1}{2} * q * (h_B + h_D) = \left(\frac{1}{2}\right) * p * q * sin\theta = \left(\frac{1}{4}\right) * (b^2 + d^2 - a^2 - c^2) * tan\theta = \frac{1}{4}\sqrt{(4*p^2*q^2 - (b^2 + d^2 - a^2 - c^2)^2)}$$

Polygonne Régulaire

Soit n : nombre de côté, s : la longueur d'un côté, r : apothem , R : rayon du cercle

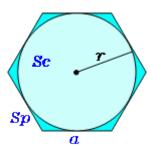
Angle central :
$$\theta = 2 * \frac{180^{\circ}}{n} = 2 * \frac{\pi}{n}$$

Apotherm:
$$\frac{1}{2} s \cot \left(\frac{180^{\circ}}{n} \right) = \frac{1}{2} s \cot \left(\frac{\pi}{n} \right)$$

$$R = \frac{1}{2} s \ csc \left(\frac{180^{\circ}}{n}\right) = \frac{1}{2} csc \left(\frac{\pi}{n}\right)$$

Apotherm:
$$\frac{1}{2}s \cot\left(\frac{180^{\circ}}{n}\right) = \frac{1}{2}s \cot\left(\frac{\pi}{n}\right)$$

$$R = \frac{1}{2}s \csc\left(\frac{180^{\circ}}{n}\right) = \frac{1}{2}\csc\left(\frac{\pi}{n}\right)$$
Aire: $\frac{1}{4}ns^2 \cot\left(\frac{180^{\circ}}{n}\right) = nr^2 \tan\frac{180^{\circ}}{n} = \frac{1}{2}nR^2 \sin\left(\frac{360^{\circ}}{n}\right)$



Polygone régulier dans un cercle inscrit

Angle central :
$$\theta = 2 * \frac{180^{\circ}}{n} = 2 * \frac{\pi}{n}$$

Côté :
$$a = 2 * r * \sin(\frac{180^{\circ}}{r})$$

Angle central :
$$\theta = 2 * \frac{180^{\circ}}{n} = 2 * \frac{\pi}{n}$$

Côté : $a = 2 * r * \sin(\frac{180^{\circ}}{n})$
Apotherm : $\sqrt{r^2 - \frac{a^2}{4}} = r * \cos(\frac{180^{\circ}}{n})$

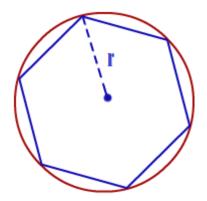
Périmètre :
$$2 * n * r * \sin\left(\frac{180^{\circ}}{n}\right)$$

Aire : $\frac{1}{2} * n * r^2 * \sin\left(\frac{360^{\circ}}{n}\right)$

Aire:
$$\frac{1}{2} * n * r^2 * \sin\left(\frac{360^\circ}{n}\right)$$

Avec n est le nombre de côté et r est le rayon du cercle

The contest to more de cote et l'est le l'ayon du cercie					
Polygone	Côté	Apotherm	Aire		
n=3	$\sqrt{3}r$	1/2r	$3/4\sqrt{3}r^{2}$		
n=4	$\sqrt{2}r$	$1/2\sqrt{2}r$	2r ²		
n=5	$\frac{1}{2}\sqrt{10-2\sqrt{5}}$ r	$\sqrt{6+2\sqrt{5}} r$	5/8		
	, ,	, ,	$\sqrt{10+2\sqrt{5}}r^2$		
n=6	R	$1/2\sqrt{3}r$	$3/2\sqrt{3}r^2$		
n=8	$\sqrt{2-\sqrt{2}}$ r	$1/2\sqrt{2+\sqrt{2}}$ r	$2\sqrt{2}r^2$		
n=10	$\frac{1}{2}(\sqrt{5}-1)r$	$\sqrt{10+2\sqrt{5}} r$	5/4		
		,	$\sqrt{10-2\sqrt{5}}r^2$		
n=12	$\sqrt{2-\sqrt{3}}$ r	$\frac{1}{2}\sqrt{2+\sqrt{3}}$ r	3r²		



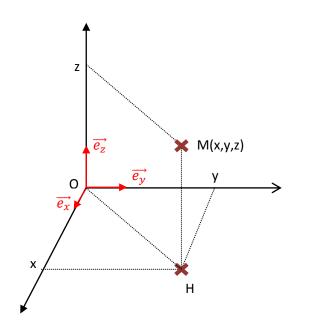
Polygone régulier sur un cercle Angle central : $\theta = 2*\frac{180^\circ}{n} = 2*\frac{\pi}{n}$ Périmètre : $2*n*r*\tan\left(\frac{180^\circ}{n}\right)$ Aire : $\frac{1}{2}*n*r^2*\tan\left(\frac{180^\circ}{n}\right)$

Avec n est le nombre de côté et r est le rayon du cercle

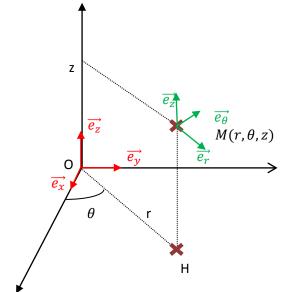
c) Systèmes de coordonnées :

Cartésiennes

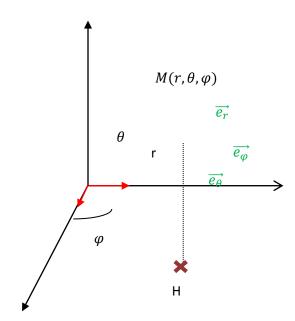
Cylindriques



$$\overrightarrow{OM} = x\overrightarrow{e_x} + y\overrightarrow{e_y} + zx\overrightarrow{e_z}$$



$$\overrightarrow{OM} = r\overrightarrow{e_r} + z\overrightarrow{e_z}$$



Sphériques



$$\overrightarrow{OM} = r\overrightarrow{e_r}$$

Les formules de changements de coordonnées entre le système cartésien et :

• Le système cylindrique:

$$x = r\cos(\theta)$$
, $y = r\sin(\theta)$

• Le système sphérique :

$$x = r\cos(\theta)\cos(\varphi)$$
, $y = r\sin(\theta)\sin(\varphi)$, $z = r\cos(\theta)$

XVII) Algèbre:

1

a) Propriétés élémentaires des opérations algébriques usuelles:

Identités remarquables :

$$(a + b)^2 = a^2 + 2ab + b^2$$
, $(a-b)^2 = a^2 - 2ab + b^2$, $a^2 - b^2 = (a + b)(a-b)$

Fractions:

$$\frac{1}{a} + \frac{1}{b} = \frac{a+b}{ab}$$

Puissances:

$$a^{0} = 1$$
, $a^{m}a^{n} = a^{m+n}$, $(a^{m})^{n} = a^{mn}$, $a^{m}b^{m} = (ab)^{m}$, $\frac{a^{m}}{a^{n}} = a^{m-n}$

Racines:

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

Logarithmes:

$$ln(ab) = ln(a) + ln(b), \quad ln(a/b) = ln(a) - ln(b), \quad ln(a^n) = n \ ln(a)$$

 $ln(e) = 1 \ avec \ e = 2,718... \quad ln(1) = 0, \quad log(a) = \frac{ln(a)}{ln(10)}$

Exponentielles:

$$b = e^a \iff a = \ln(b), \quad \ln(e^a) = e^{\ln(a)} = a, \quad e^{a+b} = e^a e^b, \quad e^{-a} = \frac{1}{e^a}$$

Approximations pour $x \ll 1$:

$$(1+x)^n \simeq 1 + nx$$
, $e^x \simeq 1 + x$, $\ln(1+x) \simeq x$
 $\sin(x) \simeq x, \cos(x) \simeq 1, \tan(x) \simeq x$ (x en radian)

b) équations du second degré :

La résolution de l'équation algébrique du second degré (d'inconnue x)

$$ax^2 + bx + c = 0$$
 où $b, c \in \mathbb{R}, a \in \mathbb{R}^*$

dépend du signe du discriminant de la forme : $\Delta = b^2 - 4 ac$

Lorsque $\Delta > 0$: l'équation admet deux solutions réelles distinctes

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

Lorsque $\Delta = 0$: l'équation admet une unique solution réelle

$$x = -\frac{b}{2a}$$

Lorsque $\Delta < 0$: l'équation admet deux solutions complexes distinctes

$$x_1 = \frac{-b + i\sqrt{|\Delta|}}{2a}$$
 et $x_2 = \frac{-b - i\sqrt{|\Delta|}}{2a}$

c) équations différentielles:

1. Équations différentielles linéaires homogènes du premier ordre :

$$y' + \alpha y = 0, \forall \alpha \in \mathbb{C}$$

La solution générale s'écrit sous la forme :

 $y(x) = A \exp(-\alpha x)$, où A est une constante complexe

2. équations différentielles linéaires homogènes du deuxième ordre :

$$y'' + 2\beta y' + \gamma y = 0, \forall \beta, \gamma \in \mathbb{C}$$

La solution générale dépend du signe de $\Delta' = \beta^2 - \gamma$:

Si
$$\Delta' > 0$$
: $y(x) = e^{-\beta x} (Ae^{\sqrt{\Delta'}x} + Be^{-\sqrt{\Delta'}x})$
Si $\Delta' = 0$: $y(x) = e^{-\beta x} (Ax + B)$
Si $\Delta' < 0$: $y(x) = e^{-\beta x} \left(A\cos\left(\sqrt{|\Delta'|x}\right) + B\cos\left(\sqrt{|\Delta'|x}\right)\right)$
Ou $y(x) = e^{-\beta x} \left(Ce^{i\sqrt{|\Delta'|x}} + De^{-i\sqrt{|\Delta'|x}}\right)$

3. Équations différentielles linéaires du premier ordre avec second membre :

$$y' + \alpha y = E(x), \forall \alpha \in \mathbb{C}^*$$

La fonction E(x), a priori quelconque, est qualifiée second membre de l'équation différentielle. La solution générale s'écrit comme la somme y = $y_0 + y_p$ de la solution générale $y_0(x) = Ae^{-\alpha x}$ (A étant constante) de l'équation homogène associée et d'une solution particulière y_p qui peut prendre la forme suivante:

- (a) Si E est constante : $y_p(x) = \frac{E}{\alpha}$
- (b) Si E est quelconque : $y_p(x) = e^{-\alpha x} \int_0^x e^{\alpha y} E(y) dy$
- 2. Algèbre générale
 - A) Utilisation de la somme, intersection, l'union et binôme de newton

Produit de sommes

Si $n \in \mathbb{N}^*$ et $a_1, ..., a_n, b_1, ..., b_n \in \mathbb{R}$ alors

$$\left(\sum_{i=1}^{n} a_{i}\right) * \left(\sum_{i=1}^{n} b_{i}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} b_{j} = \sum_{i=1}^{n} a_{i} b_{i} + \sum_{\substack{i,j \in [[1,n]] \\ i \neq j}} a_{i} b_{j}$$

$$\left(\sum_{i=1}^{n} a_{i}\right)^{2} = \sum_{i=1}^{n} a_{i}^{2} + 2 \sum_{\substack{i \leq i < j \leq n}} a_{i} a_{j} = \sum_{\substack{i,j \in [[1,n]] \\ i \neq j}} a_{i} a_{j}$$

Sommes classiques

Si $a, b \in \mathbb{Z}$ avec $a \leq b, x, y, q \in \mathbb{R}$, et $n \in \mathbb{N}^*$.

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=a}^{b} k = \frac{a+b}{2} (b-a+1) = \text{(moyenne des extrêmes)*(nombre de termes)}$$

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6} \text{ et } \sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2 = \left(\frac{n(n+1)}{2}\right)^2$$

$$\sum_{k=a}^{b} q^k = \begin{cases} q^a \frac{1-q^{b-a+1}}{1-q} si \ q \neq 1 \\ b-a+1 \ si \ q=1 \end{cases} \quad soit \ \sum_{k=a}^{b} q^k = \begin{cases} q^{1er \ indice} \ \frac{1-q^{Nb \ de \ termes}}{1-q} \\ Nb \ de \ termes \end{cases} \quad si \ q \neq 1$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{k} y^{n-k-1}$$

XVIII) Théorèmes et définitions :

1. Limites et continuités

Une fonction y = f(x) est continue à x = a si :

i) f(a) est définie exacte

iii)
$$\lim_{x \to a} f(x) = f(a)$$

ii) $\lim_{x\to a} f(x)$ existe et iii) $\lim_{x\to a} f(x) = f(a)$ Sinon, f est discontinue à x = a.

La limite $\lim_{x \to a} f(x)$ existe si et seulement si les deux limites sont égaux :

$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a'} f(x) = L = \lim_{x \to a-} f(x)$$

2. Intermédiaire:

Une fonction y = fx() qui est continue sur un intervalle fermé [a,b] et prend les valeurs entre f(a) et f(b).

Note: Si f est continue sur [a,b] et f(a) et f(b) défini son signe, alors l'équation f(x) = 0 a au moins une solution dans un intervalle ouvert (a,b).

3. Limites de fonction rationnelle comme $x \to \pm \infty$

i) $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = 0$ si le degré de f(x) < au degré de g(x)

$$\lim_{x \to +\infty} \frac{x^2 - 2x}{x^3 + 3} = 0$$

ii) $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)}$ est infinie si le degré de f(x) > au degré de g(x)

Exemple:

$$\lim_{x \to +\infty} \frac{x^3 + 2x}{x^2 - 8} = \infty$$

iii) $\lim_{x \to +\infty} \frac{f(x)}{g(x)}$ est finie di le degré de f(x) est égale au degré de g(x)

$$\lim_{x \to +\infty} \frac{2x^2 - 3x + 2}{10x - 5x^2} = -\frac{2}{5}$$

4. Asymptotes horizontale et verticale

- i) Une ligne y = b est une asymptote horizontale de graphe de y = f(x) si seulement la $\lim_{x \to +\infty} f(x) = b \text{ ou } \lim_{x \to -\infty} f(x) = b.$
- ii) Une ligne x = a est une asymptote verticale de graphe de y = f(x) si seulement la limite $\lim_{x \to a^+} f(x) = \pm \infty \text{ ou } \lim_{x \to a^-} f(x) = \pm \infty .$

5. Le taux accroissement

i) Le taux accroissement moyen : Si (x_0,y_0) et (x_1,y_1) sont des points du graphe de y = f(x) alors le taux d'accroissement moyen de y avec x sur l'intervalle $[x_0,x_1]$ est alors :

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{y_1 - y_0}{x_1 - x_0} = \frac{\Delta y}{\Delta x}$$

ii) Le taux changement : Si (x_0,y_0) est un point sur le graphe de y=f(x), alors le taux de changement de y avec respect de x à x_0 est $f'(x_0)$.

6. Définition de la dérivée

$$f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}\ ou\ f'(x)=\lim_{h\to a}\frac{f(x)-f(a)}{x-a}$$
 La première définition de la dérivée est un taux instantanée de f(x).

7. La limite du nombre e

i)
$$\lim_{n\to+\infty} (1+\frac{1}{n})^n = e$$

ii)
$$\lim_{n\to 0} (1+n)^{\frac{1}{n}} = e$$

8. Le théorème de Rolle

Si f est continue sur [a,b] et différentiable sur (a,b) pour que f(a) = f(b), alors il y a au moins c dans un intervalle (a,b) pour que f'(c) = 0.

9. Théorème de la valeur moyenne

Si f est continue sur [a,b] et différentiable sur (a,b), alors il y a au moins un nombre c dans (a,b) pour $que \frac{f(b)-f(a)}{b-a} = f'(c).$

10. Valeur extrême

Si f est continue sur un intervalle fermé [a,b], alors f(x) a deux maximum et un minimum sur [a,b].

- 11. Pour trouver le maximum et minimum des valeurs d'une fonction y = f(x) locale.
- i) Le(s) point(s) où f'(x) changent de signe. Pour trouver un premier candidat où f'(x) = 0 ou est infinie ou n'est pas existent.
 - ii) Le point finale, si n'est pas existent sur le domaine de f(x);

On compare les valeurs de la fonction à tout points pour trouver les maximums et minimums.

- 12. Soit f est différentiable pour a<x
b et continue pour $a \le x \le b$.
 - i) f'(x) > 0 pour chaque x dans un (a,b), alors f est croissant sur [a,b].
 - ii) f'x) <0 pour chaque x dans un (a,b), alors f est décroissant sur [a,b].
- 13. On suppose que f"(x) existe sur l'intervalle (a,b).
 - i) Si f"(x) >0 dans (a,b), alors f est concave vers le haut dans (a,b).
 - ii) Si f''(x) < 0 dans (a,b), alors f est concave vers le bas dans (a,b).

Localement les points d'infection de y = f(x), trouver les points où f''(x) = 0 où f''(x) est existent. Ce sont l'endroit un candidat de la fonction f(x) a un point inflexion;

14. Approximation locale linéaire et approximative

L'approximation linéaire de f(x) proche de $x = x_0$ est donnée par $y = f(x_0) + f'(x_0)$ (x-x₀).

Pour estimer la pente d'un graphe à un point on dessine la ligne de tangente pour graphe à un point.

15. Comparaison des taux

La fonction exponentiel $y = e^x$ grandit très rapidement comme $x \to \infty$ tant que la fonction logarithmique $y = \ln x$ grandit très lentement comme $x \to \infty$.

Les fonctions exponentielle par exemple $y = 2^x$ ou $y = e^x$ grandit plus grand comme $x \to \infty$ que la puissance positif. La fonction $y = \ln x$ grandit lentement comme $x \to \infty$.

Nous disons que $x \to \infty$:

- i) f(x) grandit plus rapide que g(x) si la limite $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$ ou si $\lim_{x \to \infty} \frac{g(x)}{f(x)} = 0$. Si f(x) grandit plus rapide que g(x) comme $x \to \infty$, alors g(x) grandit comme lentement que f(x)
- Si f(x) grandit plus rapide que g(x) comme $x \to \infty$, alors g(x) grandit comme lentement que f(x) comme $x \to \infty$.
 - ii) f(x) et g(x) grandit au taux d'échantillon comme $x \to \infty$ si la limite i $\lim_{x \to \infty} \frac{f(x)}{g(x)} = L \neq 0$

16. Fonctions inverse

- 1. Si f et g sont deux fonctions tel que f(g(x)) = x pour chaque x dans le domaine de g et g(f(x)) = x, pour chaque x dans le domaine de f, alors f et g sont des fonctions inverses.
- 2. Une fonction f a une fonction inverse si et seulement si l'intersection horizontale du graphe.
- 3. Si f est une augmentation ou une baisse de l'intervalle, alors f est une fonction inverse dans l'intervalle.

4. Si f est différentielle à chaque point sur un intervalle I et f'(x) $\neq 0$ sur I., alors g = f⁻¹(x) est différentiable à chaque point de l'intervalle intérieur f(I) et g'(x) = 1/f'(x).

17. Propriétés de e^x

- 1. La fonction exponentielle $y = e^x$ est une fonction inverse de $y = \ln x$.
- 2. Le domaine est tout nombre réel de $-\infty < y < \infty$.
- 3. L'intervalle est tout nombre positive y>0.

$$4.\frac{d}{dx}(e^x) = e^x$$

5. $y = e^x$ est continue, croissant et concave vers le haut pour tous x.

6.
$$\lim_{x \to \infty} e^x = +\infty \ et \ \lim_{x \to \infty} e^x = 0$$

6.
$$\lim_{x \to +\infty} e^x = +\infty$$
 et $\lim_{x \to -\infty} e^x = 0$
7. $e^{\ln x} = x$ pour x>0; $\ln(e^x) = x$ pour tous x

18. Propriétés de ln x

- 1. Le domaine de $y = \ln x$ est un nombre positives x>0
- 2. L'intervalle de y = $\ln x$ est tout nombre de $-\infty < y < \infty$.
- 3. y = ln x est continue, croissant et concave vers le bas.
- 4. ln(ab) = ln a + ln b
- 5. $\ln(a/b) = \ln a \ln b$
- 6. $\ln a^r = r \ln a$
- 7. $y = \ln x < 0 \text{ si } 0 < x < 1 \text{ et } \ln x > 0 \text{ si } x > 1$.

8.
$$\lim_{x \to +\infty} \ln x = +\infty \text{ et } \lim_{x \to -\infty} \ln x = -\infty$$
9.
$$\log_a x = \frac{\ln x}{\ln a}$$

9.
$$log_a x = \frac{\ln x}{\ln a}$$

19. Règle Trapézoïdale

Si une fonction f est continue sur un intervalle fermé [a,b] où [a,b] a été partitionnée de n sous intervalle [x₀,x₁], [x₁, x₂] ... [x_{n-1},x_n], à chaque longueur de (b-a)/n, alors $\int_a^b f(x)dx \approx \frac{b-a}{2n}[f(x_0)+x_0]$ $2f(x_1) + 2f(x_2) + \cdots + 2f(x_{n-1}) + f(x_n)$

20. Propriétés de l'intégrale définie

Soit f(x) et g(x) sont continues sur [a,b].

- 1. $\int_a^b c. f(x) dx = c \int_a^b f(x) dx$, c est une constante différent de 0. 2. $\int_a^a f(x) dx = 0$
- 3. $\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$

 $\int_a^b f(x)dx = \int_a^c f(x)dx +$ $\int_{c}^{b} f(x)dx$, où f est continue sur un intervalle constraint les nombres a, b et c.

- 5. Si f(x) est une fonction paire, alors $\int_a^a f(x)dx = 0$.
- 6. Si f(x) est une fonction impaire, alors $\int_a^a f(x)dx = 2\int_0^a f(x)dx$
- 7. Si $f(x) \ge 0$ sur [a, b], alors $\int_a^b (fx) dx > 0$
- 8. Si $g(x) \ge f(x)sur[a,b]$, alors $\int_a^b g(x)dx \ge \int_a^b f(x)dx$

21. Définition de l'intégrale définie comme une Somme

On suppose que la fonction f(x) est continue sur un intervalle fermé [a,b]. Division l'intervalle n égale au sous-intervalle, de longueur $\Delta x = \frac{b-a}{b}$. On choisit un nombre dans chaque sous-intervalle.

Soit alors
$$\lim_{n\to\infty} \sum_{k=1}^n f(x_k) \Delta x = \int_a^b f(x) dx$$
.

22. La vitesse, accélération, distance

1. La vitesse : v(t) = x'(t) = dx/dt

2. accélération : a(t) x"(t)=v'(t)=
$$\frac{dv}{dt} = \frac{d^2x}{dt^2}$$

3.
$$v(t) = \int a(t)dt$$

4.
$$x(t) = \int v(t)dt$$

23. La valeur moyenne

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx$$

XIX) Les nombres complexes :

On la définit comme $i = \sqrt{-1}$

Notation exponentielle : $e^{i\theta} = cos\theta + isin\theta$

Théorème de Moivre : $[r(\cos\theta + i\sin\theta)]^n = r^n(\cos n\theta + i\sin n\theta)$

La racine complexe nième:

Si
$$z = re^{i\theta} = r(\cos\theta + i\sin\theta)$$
 alors
$$z^{1/n} = \sqrt[n]{re^{\frac{i(\theta + 2k\pi)}{n}}}, k = 0, \pm 1, \pm 2, ...$$

XX) Les séries :

La puissance des nombres:

$$\sum_{k=1}^{n} k = \frac{1}{2}n(n+1); \ \sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1); \ \sum_{k=1}^{n} k^3 = \frac{1}{4}n^2(n+1)^2;$$

Arithmétique : $S_n = \sum_{k=0}^{n-1} (a + kd) = \frac{n}{2} \{2a + (n-1)d\}$

Géométrie (convergent pour -1<r<1)

$$S_n = \sum_{k=0}^{n-1} ar^k = \frac{a(1-r^n)}{1-r}, \ S_\infty = \frac{a}{1-r}$$

Binomial (convergent pour |x| < 1)

$$(1+x)^n = 1 + nx + \frac{n!}{(n-2)! \, 2!} x^2 + \dots + \frac{n!}{(n-r)! \, r!} x^r + \dots$$

Où
$$\frac{n!}{(n-r)!r!} = \frac{n(n-1)(n-2)...(n-r+1)}{r!}$$

Séries de Maclaurin :

$$f(x) = f(0) + xf'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^k}{k!}f^{(k)}(0) + R_{k+1}$$
 Où $R_{k+1} = \frac{x^{k+1}}{(k+1)!}f^{(k+1)}(\theta x), 0 < \theta < 1.$

Séries de Taylor:

$$f(a+h) = f(a) + hf'(a) + \frac{h^2}{2!}f''(a) + \dots + \frac{h^k}{k!}f^{(k)}(a) + R_{k+1}$$
 Où $R_{k+1} = \frac{h^{k+1}}{(k+1)!}f^{(k+1)}(a+\theta h), 0 < \theta < 1.$

Ou

$$f(x) = f(x_0) + (x - x_0)f'(x_0) + \frac{(x - x_0)^2}{2!}f''(x_0) + \dots + \frac{(x - x_0)^k}{k!}f^{(k)}(x_0) + R_{k+1}$$
 Où $R_{k+1} = \frac{(x - x_0)^{k+1}}{(k+1)!}f^{(k+1)}(x_0 + (x - x_0)\theta), 0 < \theta < 1.$

Les séries connues:

$$\begin{split} e^x &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^r}{r!} + \dots \text{ (pour tous x)} \\ \sin x &= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^r x^{2r+1}}{(2r+1)!} + \dots \text{ (pour tous x)} \\ \cos x &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^r x^{2r}}{(2r)!} + \dots \text{ (pour tous x)} \\ \tan x &= x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \dots \text{ (}|x| < \frac{\pi}{2}) \\ \sin^{-1} x &= x + \frac{1}{2} \frac{x^3}{3} + \frac{1.3}{2} \frac{x^5}{4} + \frac{13.5}{2.4} \frac{x^7}{5} + \dots + \frac{1.3.5...(2n-1)}{2.4.6...(2n)} \frac{x^{2n+1}}{2n+1} + \dots \text{ (}|x| < 1) \\ \ln(1 + x) &= x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + \dots \text{ (}|x| < 1) \\ \sinh x &= x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots \text{ (pour tous x)} \\ \cosh x &= 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + \dots \text{ (pour tous x)} \\ \tanh x &= x - \frac{x^3}{3} + \frac{2x^5}{15} - \frac{17x^7}{315} + \dots \text{ (}|x| < \frac{\pi}{2}) \\ \sinh^{-1} x &= x - \frac{1}{2} \frac{x^3}{3} + \frac{1.3}{2.4} \frac{x^5}{5} + \dots + (-1)^n \frac{1.3.5...(2n-1)}{2.4.6...2n} \frac{x^{2n+1}}{2n+1} + \dots \text{ (}|x| < 1) \\ \tanh^{-1} x &= x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \dots + \frac{x^{2n+1}}{2n+1} \text{ (}|x| < 1) \\ \end{split}$$

XXI) Les transformées de LAPLACE :

$$\tilde{f}(s) = \int_0^\infty e^{-st} f(t) dt$$

Fonction	Transformée	Fonction	Transformée
1	1	$H_{\alpha}(t)$	$e^{-\alpha s}$
	S	$=H(t-\alpha)$	S
t ⁿ	n!	$\delta(t)$	1
	$\overline{s^{n+1}}$		
$e^{\alpha t}$	1	$e^{\alpha t}t^n$	n!
	$\overline{s-\alpha}$		$\overline{(s-\alpha)^{n+1}}$
sin ωt	ω	$e^{\alpha t}\sin \omega t$	ω
	$s^2 + \omega^2$		$\frac{(s-\alpha)^2+\omega^2}{s-\alpha}$
$\cos \omega t$	ω	$e^{\alpha t}\cos\omega t$	
	$s^2 + \omega^2$		$(s-\alpha)^2+\omega^2$
$\sinh \omega t$	ω	$e^{\alpha t}$ sinh ωt	ω
	$s^2 - \omega^2$		$(s-\alpha)^2-\omega^2$
$\cosh \omega t$	ω	$e^{\alpha t} \cosh \omega t$	$s-\alpha$
	$s^2 - \omega^2$		$(s-\alpha)^2-\omega^2$

Soit
$$\tilde{f}(x) = \mathcal{L}\{f(t)\}$$
 alors $\mathcal{L}\{e^{at}f(t)\} = \tilde{f}(s-a)$, $\mathcal{L}\{tf(t)\} = -\frac{d}{ds}(\tilde{f}(s))$, $\mathcal{L}\left\{\frac{f(t)}{t}\right\} = \int_{x=s}^{\infty} \tilde{f}(x) \, dx$ si c'est exacte

Dérivées et intégrales

Soit y = y(t) et soit
$$\tilde{y} = \mathcal{L}\{y(t)\}$$
 alors $\mathcal{L}\left\{\frac{dy}{dt}\right\} = s\tilde{y} - y_0$, $\mathcal{L}\left\{\frac{d^2y}{dt^2}\right\} = s^2\tilde{y} - sy_0 - {y'}_0$, $\mathcal{L}\left\{\int_{\tau=0}^t y(\tau)d\tau\right\} = \frac{1}{s}\tilde{y}$

Déplacement temporaire

Soit
$$g(t) = H_a(t)f(t-a) = \begin{cases} 0 & t < a \\ f(t-a) & t > a \end{cases}$$

Alors

$$\mathcal{L}\{g(t)\}=e^{-as}\tilde{f}(s)$$

Changement d'échelle

$$\mathcal{L}{f(kt)} = \frac{1}{k}\tilde{f}(\frac{s}{k})$$

Fonctions périodique

Soit f(t) est de période T alors

$$\mathcal{L}\lbrace f(t)\rbrace = \frac{1}{1 - e^{-sT}} \int_{t=0}^{T} e^{-st} f(t) dt$$

Convolution

Soit
$$f(t) * g(t) = \int_{x=0}^{t} f(x)g(t-x)dx = \int_{x=0}^{t} f(t-x)g(x)dx$$

Alors

$$\mathcal{L}{f(t) * g(t)} = \tilde{f}(s)\tilde{g}(s)$$

Valeurs limites

Théorème de base

Le théorème final

$$\lim_{t\to 0+} f(t) = \lim_{s\to \infty} s\tilde{f}(s)$$

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0+} s\tilde{f}(s)$$

$$\int_0^\infty f(t)dt = \lim_{s \to 0+} s\tilde{f}(s)$$

XXII) Les transformées Z :

$$Z\{f(t)\} = \tilde{f}(Z) = \sum_{k=0}^{\infty} f(kT)z^{-k}$$

Fonction	Transformée	Fonction	Transformée
$\delta_{t,nT}$	$z^{-n}(n>0)$	$e^{-at}\sin\omega t$	$ze^{-aT}\sin\omega T$
			$z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}$
e^{-at}	Z	$e^{-at}\cos\omega t$	$z(z-e^{-aT}\cos\omega T)$
	$z-e^{-aT}$		$z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT}$
te ^{-at}	Tze^{-aT}	$te^{-at}\sin\omega t$	$Tze^{-aT}(z-e^{-2aT})\sin \omega T$
	$\overline{(z-e^{-aT})^2}$		$\overline{(z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT})^2}$
t^2e^{-at}	$T^2 z e^{-aT} (z + e^{-aT})$	$te^{-at}\cos\omega t$	$Tze^{-aT}(z^2\cos\omega T - 2ze^{-aT} + e^{-2aT}\cos\omega T)$
	$(z-e^{-aT})^3$		$(z^2 - 2ze^{-aT}\cos\omega T + e^{-2aT})^2$
sinh at	z sinh aT		
	$\overline{z^2 - 2z \cosh aT + 1}$		
cosh at	$z(z-\cosh aT)$		
	$z^2 - 2z \cosh aT + 1$		

Théorème du décalage

$$Z\{f(t+nT)\} = z^n \tilde{f}(z) - \sum_{k=0}^{n-1} z^{n-k} f(kT) \quad (n>0)$$

Formule inverse

$$f(kT) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ik\theta} \, \tilde{f}(e^{i\theta}) d\theta$$

XXIII) Séries de Fourier et transformées de Fourier :

Séries de Fourier

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \{a_n \cos n\omega t + b_0 \sin n\omega t\} \text{ (p\'eriode } T = \frac{2\pi}{\omega}\text{)}$$
 Où

$$a_n = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \cos n\omega t \, dt$$
$$b_n = \frac{2}{T} \int_{t_0}^{t_0+T} f(t) \sin n\omega t \, dt$$

Quelques séries

Série de sinus
$$a_n=0 \ , \ b_n=\frac{4}{T}\int_0^{T/2}f(t)\sin n\omega t \ dt$$
 Série de cosinus
$$b_n=0 \ , \ a_n=\frac{4}{T}\int_0^{T/2}f(t)\cos n\omega t \ dt$$

Transformée de Fourier finie

Du sinus:

$$\widetilde{f}_s(n) = \frac{4}{T} \int_0^{T/2} f(t) \sin n\omega t \, dt$$

$$f(t) = \sum_{n=1}^{\infty} \widetilde{f}_s(n) \sin n\omega t$$

Du cosinus:

$$\widetilde{f}_c(n) = \frac{4}{T} \int_0^{T/2} f(t) \cos n\omega t \, dt$$

$$f(t) = \frac{1}{2} \widetilde{f}_c(0) + \sum_{n=1}^{\infty} \widetilde{f}_c(n) \cos n\omega t$$

Intégrale de Fourier :

$$\frac{1}{2}(\lim_{t \nearrow 0} f(t) + \lim_{t \searrow 0} f(t)) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} \int_{-\infty}^{\infty} f(u)e^{-i\omega u} du \ d\omega$$

Intégrale de la Transformée de Fourier:

$$\tilde{f}(\omega) = F\{f(t)\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-i\omega u} f(u) du$$

$$f(t) = F^{-1}\{\tilde{f}(\omega)\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{i\omega u} \,\tilde{f}(\omega) d\omega$$

XXIV) Formules numérique:

Itération

Méthode de Newton Raphson pour une approximation de la racine x_0 de f(x) = 0

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Particularité des cas pour trouver \sqrt{N} utile $x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x_n} \right)$.

Méthode séquentielle :

$$x_{n+1} = x_n - \frac{f(x_n)}{\left(\frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}\right)}$$

Interpolation

$$\Delta f_n = f_{n+1} - f_{n,\ \delta} f_n = f_{n+\frac{1}{2}} - f_{n-\frac{1}{2}}$$

$$\nabla f_n = f_n - f_{n-1,\ \mu} f_n = \frac{1}{2} \left(f_{n+\frac{1}{2}} + f_{n-\frac{1}{2}} \right)$$

Formule de Newton Gregorio

$$f_p=f_0+p\Delta f_0+\frac{p(p-1)}{2!}\Delta^2 f_0+\cdots+\frac{p!}{(p-r)!\,r!}\Delta^r f_0$$
 Où $p=\frac{x-x_0}{h}$

Formule de Lagrange

$$y = \sum_{i=1}^{n} y_i l_i(x)$$

Οù

$$l_i(x) = \frac{\prod_{j=1, j \neq i}^n (x - x_j)}{\prod_{j=1, j \neq i}^n (x_i - x_j)}$$

Différentiation numérique

$$\begin{split} hf'_0 &= \mu \delta f_0 - \frac{1}{6} \mu \delta^3 f_0 + \frac{1}{30} \mu \delta^5 f_0 - \cdots \\ h^2 f''_0 &= \delta^2 f_0 - \frac{1}{12} \delta^4 f_0 + \frac{1}{90} \delta^6 f_0 - \cdots \end{split}$$

$$h{f'}_0 = \Delta f_0 - \frac{1}{2}\Delta^2 f_0 + \frac{1}{3}\Delta^3 f_0 - \frac{1}{4}\Delta^4 f_0 + \frac{1}{5}\Delta^5 f_0 - \cdots$$
$$h^2 f''_0 = \Delta^2 f_0 - \Delta^3 f_0 + \frac{11}{12}\Delta^4 f_0 - \frac{5}{6}\Delta^5 f_0 + \cdots$$

Intégration numérique

Règle de Trapezium
$$\int_{x_0}^{x_0+h} f(x) dx \approx \frac{h}{2} (f_0+f_1) + E$$
 Où $f_i=f(x_0+ih), \ E=-\frac{h^3}{12} f''(a), \ x_0 < a < x_0+h$ Composition de règle Trapezium

$$\begin{split} &\int_{x_0}^{x_0+h} f(x) dx \approx \frac{h}{2} \{f_0 + 2\,f_1 + 2f_2 + \cdots 2f_{n-1} + f_n\,\} - \frac{h^2}{12} (f_n' - f_0') + \frac{h^4}{720} (f_n''' - f_0''') \dots \\ &\text{Où } f_0' = f'(x_0), f_n' = f'(x_0 + nh), etc \end{split}$$

Règle de Simpson
$$\int_{x_0}^{x_0+2h} f(x) dx \approx \frac{h}{3} (f_0 + 4f_1 + f_2) + E$$

Où $E = -\frac{h^5}{90} f^{(4)}(a)$ $x_0 < a < x_0 + 2h$

Composition de règle de Simpson (n paire)

$$\int_{x_0}^{x_0+nh} f(x)dx \approx \frac{h}{3}(f_0+4f_1+2f_2+4f_3+2f_4+\cdots+2f_{n-2}+4f_{n-1}+f_n)+E$$
 Où $E=-\frac{nh^5}{180}f^{(4)}(a) \quad x_0 < a < x_0+nh$

Gauss ordre 1
$$\int_{-1}^{1} f(x)dx = 2f(0) + E$$

Où
$$E = \frac{2}{3}f''(a)$$
, $-1 < a < 1$

Gauss ordre 2
$$\int_{-1}^{1} f(x) dx = f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right) + E$$

Où $E = \frac{1}{135} f'^{v}(a)$, $-1 < a < 1$

Équation différentielle

La solution de y'=f(x,y) donnent la condition initiale y_0 à x_0 , $x_n = x_0 + nh$.

Méthode Euler suivant :

$$y_{n+1} = y_n + hf(x_n, y_n)$$
 $n = 0, 1, 2, ...$

Méthode Euler:

$$y_{n+1} = y_n + hf(x_{n+1}, y_{n+1})$$
 $n = 0, 1, 2, ...$

Rung Kutta ordre 2:

$$y_{n+1} = y_n + \frac{h}{6}(K_1 + 2K_2 + 2K_3 + K_4)$$

Où
$$K_1 = f(x_n, y_n)$$

$$K_{2} = f\left(x_{n} + \frac{h}{2}, y_{n} + \frac{hK_{1}}{2}\right)$$

$$K_{3} = f\left(x_{n} + \frac{h}{2}, y_{n} + \frac{hK_{2}}{2}\right)$$

$$K_{4} = f\left(x_{n} + h, y_{n} + hK_{3}\right)$$

Polynômes de Chebyschev

$$T_n(x) = \cos[n(\cos^{-1} x)]$$

$$T_0(x) = 1 T_1(x) = x$$

$$U_{n-1}(x) = \frac{T'_n(x)}{n} = \frac{\sin[n(\cos^{-1} x)]}{\sqrt{1 - x^2}}$$

$$\begin{split} T_m \big(T_n(x) \big) &= T_{mn}(x) \\ T_{n+1(x)} &= 2x T_n(x) - T_{n-1}(x) \\ U_{n+1(x)} &= 2x U_n(x) - U_{n-1}(x) \\ \int T_n(x) dx &= \frac{1}{2} \{ \frac{T_{n+1}(x)}{n+1} - \frac{T_{n-1}(x)}{n-1} \} + constant, \qquad n \geq 2 \\ f(x) &= \frac{1}{2} a_0 T_0(x) + a_1 T_1(x) + \cdots a_j T_j(x) + \cdots \\ \text{Où } a_j &= \frac{2}{\pi} \int_0^\pi f(\cos\theta) cosj\theta d\theta \qquad j \geq 0 \end{split}$$
 Et $\int f(x) dx = constant + A_1 T_1(x) + A_2 T_2(x) + \cdots A_j T_j(x) + \cdots \end{split}$

XXIV) Formule vectorielle:

Où $A_j = \frac{(a_{j-1} - a_{j+1})}{2i}$ $j \ge 1$

Le produit scalaire $a.b = ab \cos \theta = a_1b_1 + a_2b_2 + a_3b_3$ Produit vectorielle $a \times b = ab \sin \theta \hat{n} = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$

=
$$(a_2b_3-a_3b_2)i+(a_3b_1-a_1b_3)j+(a_1b_2-a_2b_1)k$$

Produit Triple

$$[a, b, c] = (a \times b) \cdot c = a \cdot (b \times c) = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$
$$a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$$

Calculs vectorielles

$$\nabla(\alpha\beta) = \alpha\nabla\beta + \beta\nabla\alpha$$

$$div(\alpha A) = \alpha \ div \ A + A. (\nabla\alpha)$$

$$curl(\alpha A) = \alpha \ curl \ A - A \times (\nabla\alpha)$$

$$div(A \times B) = B. \ curl \ A -. \ curl \ B$$

$$curl(A \times B) = A \ div \ B - B \ div \ A + (B.\nabla)A - (A.\nabla)B$$

$$grad(A.B) = A \times curl \ B + B \times curl \ A + (A.\nabla)B + (B.\nabla)A$$

Théorème d'intégralle

Théorème divergence $\int_{surface} A. dS = \int_{volume} div A dV$

Thèorème Stokes

$$\int_{surface} (curl A) . dS = \int_{contour} A dr$$

Théorème de Green

$$\int_{volume} (\psi \nabla^2 \phi - \phi \nabla^2 \psi) . \, dV = \int_{surface} (\psi \frac{\partial \phi}{\partial n} - \phi \frac{\partial \psi}{\partial n}) \, |dS|$$

$$\int_{volume} \{\psi \nabla^2 \phi + (\nabla \phi)(\nabla \psi)\} dV = \int_{surface} \psi \frac{\partial \phi}{\partial n} |dS|$$

Où dS = $\hat{n}|dS|$

XXV) Mécaniques :

Kinematics

Mouvement, constante accélération

$$v = u + ft$$
, $s = ut + \frac{1}{2}ft^2 = \frac{1}{2}(u + v)t$

Solution générale de $\frac{d^2x}{dt^2} = -\omega^2x \; est$

$$x = a\cos\omega t + b\sin\omega t = R\sin(\omega t + \phi)$$

Où R =
$$\sqrt{a^2 + b^2}$$
 et $\cos \phi = \frac{a}{R}$, $\sin \phi = \frac{b}{R}$

Coordonnées polaires de la vitesse est $(\dot{r}, r\dot{\theta}) = \dot{r}e_r + r\dot{\theta}e_{\theta}$ et

l'accélération est $[\ddot{r} - r\dot{\theta}^2, r\ddot{\theta} + 2\dot{r}\dot{\theta}^2] = (\ddot{r} - r\dot{\theta}^2)e_r + (r\ddot{\theta} + 2\dot{r}\dot{\theta}^2)e_{\theta}$.

Centre de masse

Hémisphère shell, de rayon r : 1/2 r

Hémisphère, de rayon r: 3/8 r

Un cône : 3/4 h